menyederhanakan istilah secara integral
T=e−12((zy−μxσx)2−y)yk/2−2
temukan polinomial sedemikian rupap(y)
[p(y)e−12((zy−μxσx)2−y)]′=p′(y)e−12((zy−μxσx)2−y)+p(y)[−12((zy−μxσx)2−y)]′e−12((zy−μxσx)2−y)=T
yang mengurangi untuk menemukan sedemikian rupa sehinggap(y)
p′(y)+p(y)[−12((zy−μxσx)2−y)]′=yk/2−2
atau
p′(y)−12p(y)(zμxσ2xy−2z2σ2xy−3−1)=yk/2−2
yang dapat dilakukan mengevaluasi semua kekuatan terpisahy
edit setelah komentar
Solusi di atas tidak akan berfungsi karena berbeda.
Namun, beberapa yang lain telah mengerjakan jenis produk ini.
Menggunakan transformasi Fourrier:
Schoenecker, Steven, dan Tod Luginbuhl. "Fungsi Karakteristik dari Produk Dua Variabel Acak Gaussian dan Produk dari Gaussian dan Variabel Acak Gamma." IEEE Signal Processing Letters 23.5 (2016): 644-647.
http://ieeexplore.ieee.org/document/7425177/#full-text-section
Z=XYX∼N(0,1)Y∼Γ(α,β)
φZ=1βα|t|−αexp(14β2t2)D−α(1β|t|)
with Dα Whittaker's function ( http://people.math.sfu.ca/~cbm/aands/page_686.htm )
Using Mellin transform:
Springer and Thomson have described more generally the evaluation of products of beta, gamma and Gaussian distributed random variables.
Springer, M. D., and W. E. Thompson. "The distribution of products of beta, gamma and Gaussian random variables." SIAM Journal on Applied Mathematics 18.4 (1970): 721-737.
http://epubs.siam.org/doi/10.1137/0118065
They use the Mellin integral transform. The Mellin transform of Z is the product of the Mellin transforms of X and Y (see http://epubs.siam.org/doi/10.1137/0118065 or https://projecteuclid.org/euclid.aoms/1177730201). In the studied cases of products the reverse transform of this product can be expressed as a Meijer G-function for which they also provide and prove computational methods.
They did not analyze the product of a Gaussian and gamma distributed variable, although you might be able to use the same techniques. If I try to do this quickly then I believe it should be possible to obtain an H-function (https://en.wikipedia.org/wiki/Fox_H-function ) although I do not directly see the possibility to get a G-function or make other simplifications.
M{fY(x)|s}=2s−1Γ(12k+s−1)/Γ(12k)
and
M{fX(x)|s}=1π2(s−1)/2σs−1Γ(s/2)
you get
M{fZ(x)|s}=1π232(s−1)σs−1Γ(s/2)Γ(12k+s−1)/Γ(12k)
and the distribution of Z is:
fZ(y)=12πi∫c+i∞c−i∞y−sM{fZ(x)|s}ds
which looks to me (after a change of variables to eliminate the 232(s−1) term) as at least a H-function
what is still left is the puzzle to express this inverse Mellin transform as a G function. The occurrence of both s and s/2 complicates this. In the separate case for a product of only Gaussian distributed variables the s/2 could be transformed into s by substituting the variable x=w2. But because of the terms of the chi-square distribution this does not work anymore. Maybe this is the reason why nobody has provided a solution for this case.