Dari apa yang saya tahu, tidak ada banyak perbedaan antara AIC dan BIC. Keduanya merupakan pendekatan matematis yang nyaman yang dapat dilakukan untuk membandingkan model secara efisien. Jika mereka memberikan Anda model "terbaik" yang berbeda, itu mungkin berarti Anda memiliki ketidakpastian model tinggi, yang lebih penting untuk dikhawatirkan daripada apakah Anda harus menggunakan AIC atau BIC. Saya pribadi menyukai BIC lebih baik karena ia meminta lebih banyak (lebih sedikit) dari suatu model jika memiliki lebih banyak (lebih sedikit) data yang sesuai dengan parameternya - seperti guru yang meminta standar kinerja yang lebih tinggi (lebih rendah) jika siswa mereka memiliki lebih banyak (lebih sedikit) ) waktu untuk belajar tentang subjek. Bagi saya ini sepertinya hal yang intuitif untuk dilakukan. Tapi kemudian saya yakin ada juga argumen yang sama intuitif dan menarik untuk AIC juga, mengingat bentuknya yang sederhana.
Sekarang setiap kali Anda membuat perkiraan, pasti akan ada beberapa kondisi ketika perkiraan tersebut adalah sampah. Ini dapat dilihat tentunya untuk AIC, di mana terdapat banyak "penyesuaian" (AICc) untuk memperhitungkan kondisi tertentu yang membuat perkiraan awal menjadi buruk. Ini juga hadir untuk BIC, karena ada berbagai metode lain yang lebih tepat (tetapi masih efisien) ada, seperti Fully Laplace Approximations untuk campuran g-priors Zellner (BIC adalah pendekatan untuk metode pendekatan Laplace untuk integral).
Satu tempat di mana keduanya adalah omong kosong adalah ketika Anda memiliki informasi penting sebelumnya tentang parameter dalam setiap model yang diberikan. AIC dan BIC tidak perlu menghukum model di mana parameter diketahui sebagian dibandingkan dengan model yang memerlukan parameter untuk diperkirakan dari data.
P(D|M,A)P(M|D,A)MMA
Mi:the ith model is the best description of the dataA:out of the set of K models being considered, one of them is the best
Dan kemudian terus menetapkan model probabilitas yang sama (parameter yang sama, data yang sama, perkiraan yang sama, dll.), Saya akan mendapatkan set nilai BIC yang sama. Hanya dengan melampirkan semacam makna unik pada huruf logis "M" seseorang dapat ditarik ke dalam pertanyaan-pertanyaan yang tidak relevan tentang "model yang benar" (gema dari "agama yang benar"). Satu-satunya hal yang "mendefinisikan" M adalah persamaan matematika yang menggunakannya dalam perhitungan mereka - dan ini hampir tidak pernah memilih satu dan hanya satu definisi. Saya bisa memasukkan proposisi prediksi tentang M ("model ke-i akan memberikan prediksi terbaik"). Saya pribadi tidak bisa melihat bagaimana ini akan mengubah salah satu kemungkinan, dan karenanya seberapa baik atau buruk BIC (AIC dalam hal ini juga - walaupun AIC didasarkan pada derivasi yang berbeda)
Dan selain itu, apa yang salah dengan pernyataan Jika model yang benar adalah di set saya mempertimbangkan, maka ada 57% kemungkinan bahwa itu adalah model B . Tampak cukup masuk akal bagi saya, atau Anda bisa menggunakan versi yang lebih "lunak" ada kemungkinan 57% bahwa model B adalah yang terbaik di luar rangkaian yang sedang dipertimbangkan
Satu komentar terakhir: Saya pikir Anda akan menemukan banyak pendapat tentang AIC / BIC karena ada orang yang tahu tentang mereka.