Interpolasi data influenza yang menghemat rata-rata mingguan


13

Edit

Saya telah menemukan kertas yang menggambarkan dengan tepat prosedur yang saya butuhkan. Satu-satunya perbedaan adalah bahwa makalah menginterpolasi data rata-rata bulanan ke harian, sambil mempertahankan rata-rata bulanan. Saya mengalami kesulitan untuk mengimplementasikan pendekatan di R. Setiap petunjuk dihargai.

Asli

Untuk setiap minggu, saya memiliki data jumlah berikut (satu nilai per minggu):

  • Jumlah konsultasi dokter
  • Jumlah kasus influenza

Tujuan saya adalah mendapatkan data harian dengan interpolasi (saya memikirkan splines linier atau terpotong). Yang penting adalah saya ingin menghemat rata-rata mingguan, yaitu rata-rata data harian yang diinterpolasi harus sama dengan nilai yang terekam minggu ini. Selain itu, interpolasi harus lancar. Satu masalah yang dapat muncul adalah bahwa satu minggu tertentu memiliki kurang dari 7 hari (misalnya pada awal atau akhir tahun).

Saya akan berterima kasih atas saran tentang masalah ini.

Terima kasih banyak.

Berikut ini adalah kumpulan data sampel untuk tahun 1995 ( diperbarui ):

structure(list(daily.ts = structure(c(9131, 9132, 9133, 9134, 
9135, 9136, 9137, 9138, 9139, 9140, 9141, 9142, 9143, 9144, 9145, 
9146, 9147, 9148, 9149, 9150, 9151, 9152, 9153, 9154, 9155, 9156, 
9157, 9158, 9159, 9160, 9161, 9162, 9163, 9164, 9165, 9166, 9167, 
9168, 9169, 9170, 9171, 9172, 9173, 9174, 9175, 9176, 9177, 9178, 
9179, 9180, 9181, 9182, 9183, 9184, 9185, 9186, 9187, 9188, 9189, 
9190, 9191, 9192, 9193, 9194, 9195, 9196, 9197, 9198, 9199, 9200, 
9201, 9202, 9203, 9204, 9205, 9206, 9207, 9208, 9209, 9210, 9211, 
9212, 9213, 9214, 9215, 9216, 9217, 9218, 9219, 9220, 9221, 9222, 
9223, 9224, 9225, 9226, 9227, 9228, 9229, 9230, 9231, 9232, 9233, 
9234, 9235, 9236, 9237, 9238, 9239, 9240, 9241, 9242, 9243, 9244, 
9245, 9246, 9247, 9248, 9249, 9250, 9251, 9252, 9253, 9254, 9255, 
9256, 9257, 9258, 9259, 9260, 9261, 9262, 9263, 9264, 9265, 9266, 
9267, 9268, 9269, 9270, 9271, 9272, 9273, 9274, 9275, 9276, 9277, 
9278, 9279, 9280, 9281, 9282, 9283, 9284, 9285, 9286, 9287, 9288, 
9289, 9290, 9291, 9292, 9293, 9294, 9295, 9296, 9297, 9298, 9299, 
9300, 9301, 9302, 9303, 9304, 9305, 9306, 9307, 9308, 9309, 9310, 
9311, 9312, 9313, 9314, 9315, 9316, 9317, 9318, 9319, 9320, 9321, 
9322, 9323, 9324, 9325, 9326, 9327, 9328, 9329, 9330, 9331, 9332, 
9333, 9334, 9335, 9336, 9337, 9338, 9339, 9340, 9341, 9342, 9343, 
9344, 9345, 9346, 9347, 9348, 9349, 9350, 9351, 9352, 9353, 9354, 
9355, 9356, 9357, 9358, 9359, 9360, 9361, 9362, 9363, 9364, 9365, 
9366, 9367, 9368, 9369, 9370, 9371, 9372, 9373, 9374, 9375, 9376, 
9377, 9378, 9379, 9380, 9381, 9382, 9383, 9384, 9385, 9386, 9387, 
9388, 9389, 9390, 9391, 9392, 9393, 9394, 9395, 9396, 9397, 9398, 
9399, 9400, 9401, 9402, 9403, 9404, 9405, 9406, 9407, 9408, 9409, 
9410, 9411, 9412, 9413, 9414, 9415, 9416, 9417, 9418, 9419, 9420, 
9421, 9422, 9423, 9424, 9425, 9426, 9427, 9428, 9429, 9430, 9431, 
9432, 9433, 9434, 9435, 9436, 9437, 9438, 9439, 9440, 9441, 9442, 
9443, 9444, 9445, 9446, 9447, 9448, 9449, 9450, 9451, 9452, 9453, 
9454, 9455, 9456, 9457, 9458, 9459, 9460, 9461, 9462, 9463, 9464, 
9465, 9466, 9467, 9468, 9469, 9470, 9471, 9472, 9473, 9474, 9475, 
9476, 9477, 9478, 9479, 9480, 9481, 9482, 9483, 9484, 9485, 9486, 
9487, 9488, 9489, 9490, 9491, 9492, 9493, 9494, 9495), class = "Date"), 
    wdayno = c(0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 
    5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 
    6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 
    0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 
    1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 
    2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 
    3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 
    4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 
    5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 
    6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 
    0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 
    1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 
    2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 
    3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 
    4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 
    5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 
    6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 
    0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 
    1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 
    2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 
    3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 
    4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 
    5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 
    6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 
    0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L), month = c(1, 1, 1, 1, 1, 
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
    1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
    2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
    3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 
    4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 
    4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 
    5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 
    6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 
    6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 
    7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 
    8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 
    8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 
    9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 
    9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 
    10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 
    10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 
    11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 
    11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 
    12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 
    12, 12, 12, 12), year = c(1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995), yearday = 0:364, 
    no.influ.cases = c(NA, NA, NA, 168L, NA, NA, NA, NA, NA, 
    NA, 199L, NA, NA, NA, NA, NA, NA, 214L, NA, NA, NA, NA, NA, 
    NA, 230L, NA, NA, NA, NA, NA, NA, 267L, NA, NA, NA, NA, NA, 
    NA, 373L, NA, NA, NA, NA, NA, NA, 387L, NA, NA, NA, NA, NA, 
    NA, 443L, NA, NA, NA, NA, NA, NA, 579L, NA, NA, NA, NA, NA, 
    NA, 821L, NA, NA, NA, NA, NA, NA, 1229L, NA, NA, NA, NA, 
    NA, NA, 1014L, NA, NA, NA, NA, NA, NA, 831L, NA, NA, NA, 
    NA, NA, NA, 648L, NA, NA, NA, NA, NA, NA, 257L, NA, NA, NA, 
    NA, NA, NA, 203L, NA, NA, NA, NA, NA, NA, 137L, NA, NA, NA, 
    NA, NA, NA, 78L, NA, NA, NA, NA, NA, NA, 82L, NA, NA, NA, 
    NA, NA, NA, 69L, NA, NA, NA, NA, NA, NA, 45L, NA, NA, NA, 
    NA, NA, NA, 51L, NA, NA, NA, NA, NA, NA, 45L, NA, NA, NA, 
    NA, NA, NA, 63L, NA, NA, NA, NA, NA, NA, 55L, NA, NA, NA, 
    NA, NA, NA, 54L, NA, NA, NA, NA, NA, NA, 52L, NA, NA, NA, 
    NA, NA, NA, 27L, NA, NA, NA, NA, NA, NA, 24L, NA, NA, NA, 
    NA, NA, NA, 12L, NA, NA, NA, NA, NA, NA, 10L, NA, NA, NA, 
    NA, NA, NA, 22L, NA, NA, NA, NA, NA, NA, 42L, NA, NA, NA, 
    NA, NA, NA, 32L, NA, NA, NA, NA, NA, NA, 52L, NA, NA, NA, 
    NA, NA, NA, 82L, NA, NA, NA, NA, NA, NA, 95L, NA, NA, NA, 
    NA, NA, NA, 91L, NA, NA, NA, NA, NA, NA, 104L, NA, NA, NA, 
    NA, NA, NA, 143L, NA, NA, NA, NA, NA, NA, 114L, NA, NA, NA, 
    NA, NA, NA, 100L, NA, NA, NA, NA, NA, NA, 83L, NA, NA, NA, 
    NA, NA, NA, 113L, NA, NA, NA, NA, NA, NA, 145L, NA, NA, NA, 
    NA, NA, NA, 175L, NA, NA, NA, NA, NA, NA, 222L, NA, NA, NA, 
    NA, NA, NA, 258L, NA, NA, NA, NA, NA, NA, 384L, NA, NA, NA, 
    NA, NA, NA, 755L, NA, NA, NA, NA, NA, NA, 976L, NA, NA, NA, 
    NA, NA, NA, 879L, NA, NA, NA, NA), no.consultations = c(NA, 
    NA, NA, 15093L, NA, NA, NA, NA, NA, NA, 20336L, NA, NA, NA, 
    NA, NA, NA, 20777L, NA, NA, NA, NA, NA, NA, 21108L, NA, NA, 
    NA, NA, NA, NA, 20967L, NA, NA, NA, NA, NA, NA, 20753L, NA, 
    NA, NA, NA, NA, NA, 18782L, NA, NA, NA, NA, NA, NA, 19778L, 
    NA, NA, NA, NA, NA, NA, 19223L, NA, NA, NA, NA, NA, NA, 21188L, 
    NA, NA, NA, NA, NA, NA, 22172L, NA, NA, NA, NA, NA, NA, 21965L, 
    NA, NA, NA, NA, NA, NA, 21768L, NA, NA, NA, NA, NA, NA, 21277L, 
    NA, NA, NA, NA, NA, NA, 16383L, NA, NA, NA, NA, NA, NA, 15337L, 
    NA, NA, NA, NA, NA, NA, 19179L, NA, NA, NA, NA, NA, NA, 18705L, 
    NA, NA, NA, NA, NA, NA, 19623L, NA, NA, NA, NA, NA, NA, 19363L, 
    NA, NA, NA, NA, NA, NA, 16257L, NA, NA, NA, NA, NA, NA, 19219L, 
    NA, NA, NA, NA, NA, NA, 17048L, NA, NA, NA, NA, NA, NA, 19231L, 
    NA, NA, NA, NA, NA, NA, 20023L, NA, NA, NA, NA, NA, NA, 19331L, 
    NA, NA, NA, NA, NA, NA, 18995L, NA, NA, NA, NA, NA, NA, 16571L, 
    NA, NA, NA, NA, NA, NA, 15010L, NA, NA, NA, NA, NA, NA, 13714L, 
    NA, NA, NA, NA, NA, NA, 10451L, NA, NA, NA, NA, NA, NA, 14216L, 
    NA, NA, NA, NA, NA, NA, 16800L, NA, NA, NA, NA, NA, NA, 18305L, 
    NA, NA, NA, NA, NA, NA, 18911L, NA, NA, NA, NA, NA, NA, 17812L, 
    NA, NA, NA, NA, NA, NA, 18665L, NA, NA, NA, NA, NA, NA, 18977L, 
    NA, NA, NA, NA, NA, NA, 19512L, NA, NA, NA, NA, NA, NA, 17424L, 
    NA, NA, NA, NA, NA, NA, 14464L, NA, NA, NA, NA, NA, NA, 16383L, 
    NA, NA, NA, NA, NA, NA, 19916L, NA, NA, NA, NA, NA, NA, 18255L, 
    NA, NA, NA, NA, NA, NA, 20113L, NA, NA, NA, NA, NA, NA, 20084L, 
    NA, NA, NA, NA, NA, NA, 20196L, NA, NA, NA, NA, NA, NA, 20184L, 
    NA, NA, NA, NA, NA, NA, 20261L, NA, NA, NA, NA, NA, NA, 22246L, 
    NA, NA, NA, NA, NA, NA, 23030L, NA, NA, NA, NA, NA, NA, 10487L, 
    NA, NA, NA, NA)), .Names = c("daily.ts", "wdayno", "month", 
"year", "yearday", "no.influ.cases", "no.consultations"), row.names = c(NA, 
-365L), class = "data.frame")

4
Pertanyaan ini menanyakan versi satu dimensi dari interpolasi area-ke-titik , yang dipelajari dengan cukup baik di industri pertambangan. Abstrak yang direferensikan secara eksplisit mencatat bahwa metode geostatistik menghasilkan prediksi "koheren (mempertahankan massa ...)." Saya percaya pendekatan ini mengatasi keberatan yang dibuat oleh @Nick Cox.
whuber

@whuber Terima kasih untuk referensi, saya tidak menyadari bahwa masalah semacam ini terkenal di geostatistik. Apakah Anda mengetahui adanya penerapan metode tersebut di Ratau paket statistik lainnya (Saya tidak memiliki akses ke ArcGIS)? Tanpa implementasi yang tersedia secara konkret, saya masih terjebak, saya khawatir.
COOLSerdash

2
Saya percaya ini bisa dilakukan dengan menggunakan kode geoRglm, asalkan Anda memiliki pemahaman yang sangat baik tentang variografi dan perubahan dukungan (yang diperlukan untuk mengembangkan model korelasi spasial). Manual ini diterbitkan oleh Springer Verlag sebagai Model-Based Geostatistics, Diggle & Ribeiro Jr.
whuber

3
Pembagian data yang dikelompokkan adalah prosedur umum dalam demografi. Istilah pencarian adalah "Interpolasi sprague"; itu akan membawa Anda ke banyak variasi. Dengan memasang spline derajat lima ke nilai kumulatif dengan cara yang menjamin kurva monotonik, metode ini dan variannya secara efektif membagi data yang dikelompokkan. (Sudah ada sejak 1880.) Istilah umumnya adalah "interpolasi osculatory." Rob Hyndman, antara lain, telah menulis tentang subjek ini: lihat Smith, Hyndman, dan Wood, Interpolasi Spline untuk Variabel Demografis: Masalah Monotonisitas, J. Pop. Res. 21 No. 1 (2004), 95-98.
whuber

2
Pertanyaan Anda juga dapat dilihat sebagai pemetaan dasymetric dalam satu dimensi. Ini adalah prosedur untuk menghasilkan peta terperinci jumlah yang telah diukur pada beberapa tingkat agregat, seperti unit Sensus standar. (Ini dapat ditelusuri kembali setidaknya ke 1936: lihat John K. Wright, Metode Pemetaan Kepadatan Penduduk: Dengan Cape Cod sebagai Contoh. Tinjauan Geografis 26: 1 (Jan 1936), hlm. 103-110). Untuk pendekatan terkini (agak ad hoc , tetapi dengan daftar pustaka singkat yang membantu) lihat giscience.org/proceedings/abstracts/giscience2012_paper_179.pdf .
whuber

Jawaban:


8

Saya telah berhasil membuat Rfungsi yang menginterpolasi titik-titik genap spasi secara linier dan dengan splines sambil mempertahankan nilai rata-rata (mis. Mingguan, bulanan, dll.). Ia menggunakan fungsi na.approxdan na.splinedari zoopaket dan secara berulang menghitung splines dengan properti yang diinginkan. Algoritma ini dijelaskan dalam makalah ini .

Ini kodenya:

interpol.consmean <- function(y, period=7, max.iter=100, tol=1e-4, plot=FALSE) {

  require(zoo)

  if( plot == TRUE ) {
    require(ggplot2)
  }

  y.temp.linear <- matrix(NA, ncol=length(y), nrow=max.iter+1)
  y.temp.linear[1, ] <- y

  y.temp.spline <- y.temp.linear

  y.temp.pred.spline <- matrix(NA, ncol=length(y), nrow=max.iter)
  y.temp.pred.linear <- matrix(NA, ncol=length(y), nrow=max.iter)

  ind.actual <- which(!is.na(y))

  if ( !all(diff(ind.actual)[1]== diff(ind.actual)) ) {
    stop("\"y\" must contain an evenly spaced time series")
  }

  partial <- ifelse((length(y) - ind.actual[length(ind.actual)]) < period/2,
                    TRUE, FALSE)

  for(k in 1:max.iter) {

    y.temp.pred.linear[k,] <- na.approx(y.temp.linear[k, ], na.rm=FALSE, rule=2)
    y.temp.pred.spline[k,] <- na.spline(y.temp.spline[k, ], method="fmm")

    interpol.means.linear <- rollapply(y.temp.pred.linear[k,], width=period, mean,
                                       by=period, align="left", partial=partial) 
    interpol.means.splines <- rollapply(y.temp.pred.spline[k,], width=period, mean,
                                        by=period, align="left", partial=partial) 

    resid.linear <- y.temp.linear[k, ][ ind.actual ] - interpol.means.linear
    resid.spline <- y.temp.spline[k, ][ ind.actual ] - interpol.means.splines

    if ( max(resid.linear, na.rm=TRUE) < tol & max(resid.spline, na.rm=TRUE) < tol ){
      cat("Converged after", k, "iterations with tolerance of", tol, sep=" ")
      break
    }

    y.temp.linear[k+1, ][!is.na(y.temp.linear[k, ])] <-  resid.linear
    y.temp.spline[k+1, ][!is.na(y.temp.spline[k, ])] <-  resid.spline

  }  

  interpol.linear.final <- colSums(y.temp.pred.linear, na.rm=TRUE)
  interpol.spline.final <- colSums(y.temp.pred.spline, na.rm=TRUE)

  if ( plot == TRUE ) {

    plot.frame <- data.frame(
      y=rep(y,2)/7,
      x=rep(1:length(y),2),
      inter.values=c(interpol.linear.final, interpol.spline.final)/7,
      method=c(rep("Linear", length(y)), rep("Spline", length(y)))
    )

    p <- ggplot(data=plot.frame, aes(x=x)) +
      geom_point(aes(y=y, x=x), size=4) +
      geom_line(aes(y=inter.values, color=method), size=1) +
      ylab("y") +
      xlab("x") +
      theme(axis.title.y =element_text(vjust=0.4, size=20, angle=90)) +
      theme(axis.title.x =element_text(vjust=0, size=20, angle=0)) +
      theme(axis.text.x =element_text(size=15, colour = "black")) +
      theme(axis.text.y =element_text(size=17, colour = "black")) +
      theme(panel.background =  element_rect(fill = "grey85", colour = NA),
            panel.grid.major =  element_line(colour = "white"),
            panel.grid.minor =  element_line(colour = "grey90", size = 0.25))+
      scale_color_manual(values=c("#377EB8", "#E41A1C"), 
                         name="Interpolation method",
                         breaks=c("Linear", "Spline"),
                         labels=c("Linear", "Spline")) +
      theme(legend.position="none") +
      theme(strip.text.x = element_text(size=16)) +
      facet_wrap(~ method)

    suppressWarnings(print(p))

  }
  list(linear=interpol.linear.final, spline=interpol.spline.final)
}

Mari kita terapkan fungsi ke dataset contoh yang diberikan dalam pertanyaan:

interpolations <- interpol.consmean(y=dat.frame$no.influ.cases, period=7,
                                    max.iter = 100, tol=1e-6, plot=TRUE)

Interpolasi

Baik interpolasi linier dan spline tampak baik-baik saja. Mari kita periksa apakah cara mingguan dipertahankan (keluaran terpotong):

cbind(dat.frame$no.influ.cases[!is.na(dat.frame$no.influ.cases)],
      rollapply(interpolations$linear, 7, mean, by=7, align="left", partial=F))

      [,1] [,2]
 [1,]  168  168
 [2,]  199  199
 [3,]  214  214
 [4,]  230  230
 [5,]  267  267
 [6,]  373  373
 [7,]  387  387
 [8,]  443  443
 [9,]  579  579
[10,]  821  821
[11,] 1229 1229

1
Anda harus menemukan paket yang sesuai untuk itu dan bertanya kepada pengelola apakah mereka ingin memasukkannya.
Spacedman

4

Setiap garis lurus yang melewati rata-rata di titik tengah rentang akan menghasilkan nilai harian yang memiliki rata-rata yang diperlukan. Komentar terakhir Nick Cox tentang 'bagi jumlah mingguan dengan jumlah hari' adalah kasus khusus dengan gradien = 0.

Jadi kita dapat menyesuaikan ini dan memilih gradien untuk membuat hal-hal yang mungkin sedikit lebih lancar. Inilah tiga fungsi R untuk melakukan sesuatu seperti itu:

interpwk <- function(x,y,delta){
  offset=-3:3
  yout=y+delta*offset
  xout=x+offset
  cbind(xout,yout)
}

get_delta <- function(x,y,pos){
  (y[pos+1]-y[pos-1])/(x[pos+1]-x[pos-1])
}

#' get slope from neighbours
interpall <- function(x,y,delta1,f=1){
  for(i in 2:(length(x)-1)){
    delta=get_delta(x,y,i)
    xyout=interpwk(x[i],y[i],delta/f)
    points(xyout)
  }
}

Tambahkan ukuran hari ke data Anda, lalu plot, dan lalu plot interpolator:

> data$day=data$week*7
> plot(data$day,data$no.influ.cases,type="l")
> interpall(data$day,data$no.influ.cases,f=1)

interpolator pengawet rata-rata

Kemungkinan lain adalah membatasi kontinuitas pada akhir pekan tetapi ini memberi Anda sebuah sistem dengan hanya satu derajat kebebasan - yaitu ia sepenuhnya ditentukan oleh kemiringan bagian pertama (karena dengan demikian semua bagian lain harus bergabung). Saya tidak punya kode ini - Anda harus mencobanya!

[Apol untuk kode R yang sedikit kumuh, itu harus benar-benar mengembalikan poin daripada merencanakannya]


+1, terima kasih. Masalahnya adalah bahwa nilai-nilai yang diinterpolasi tidak mulus dan ada langkah-langkah yang cukup mendadak antara minggu-minggu. Saya telah mengedit pertanyaan saya termasuk makalah yang pada dasarnya menjelaskan dengan tepat pendekatan yang saya butuhkan.
COOLSerdash

Apa tujuannya di sini? Mengapa anggapan kasus influenza bervariasi dengan lancar? Semakin banyak struktur yang Anda masukkan ke dalam data ini dengan interpolasi, semakin banyak struktur yang diperkenalkan hanya perlu dipisahkan pada beberapa tahap pemodelan. Saya tidak berpikir Anda telah menanggapi komentar saya pada 19 Mei. "Mengumpulkan data mingguan menjadi data harian hanya akan menciptakan masalah dengan ketergantungan yang diperkenalkan dan tingkat kebebasan yang terlalu optimistis yang akan membuat sulit penilaian dan penilaian model."
Nick Cox

Kendati berarti rata adalah salah. Mean yang Anda lihat di sini adalah mean sampel, dan tergantung pada variasi statistik dalam beberapa cara. Bayangkan sebuah model, kemudian gunakan interpolator yang memiliki rata-rata sesuai harapannya, lalu lakukan beberapa imputasi data harian dan lakukan analisis Anda seratus kali atau lebih untuk mengetahui bagaimana ketidakpastian ini memengaruhi kesimpulan Anda.
Spacedman

1
@Spacedman Metode API geostatistik yang saya sebut (dalam komentar untuk pertanyaan) akan menangani keberatan Anda (cukup valid) dengan penuh percaya diri, dengan menggunakan komponen bukan nol dalam parameter nugget variogram. Simulasi kondisional geostatistik adalah metode terkontrol untuk melakukan beberapa imputasi yang Anda rujuk.
whuber

2
Benar. Anda tampaknya memiliki situasi satu dimensi yang hampir persis seperti contoh yang berjalan di manual Diggle & Ribeiro untuk geoRglm (kasus malaria di Gambia, yang dekat dengan rawa-rawa, dll., Sebagai kovariat). Komplikasi utama adalah menangani perubahan dukungan, tetapi itu tidak akan benar-benar mempengaruhi prediksi: itu terutama akan mempengaruhi estimasi variogram. Lihat ncbi.nlm.nih.gov/pmc/articles/PMC2995922 untuk beberapa teori dan contoh serupa ("binomial kriging" dari kasus penyakit).
whuber

3

n

(Jika data pengukuran bukan hitungan, saya cenderung memodelkan proporsi melalui model Dirichlet, tapi itu sedikit lebih terlibat.)

Fakta bahwa jumlah hari tidak akan selalu sama seharusnya tidak menjadi masalah khusus, selama Anda tahu apa itu - selama Anda menggunakan offset untuk meletakkan segala sesuatu di 'level' yang sama.


1
Koreksi saya jika saya salah, tetapi saya pikir ini memiliki pertanyaan mundur. Ini bukan cara memuluskan hitungan harian; itu cara menebak jumlah harian dari data mingguan. (Mungkin poster memiliki data harian untuk hal lain, misalnya suhu.) Selain itu, bagaimana multinomial atau Dirichlet ini? Terlihat lebih seperti Poisson bagi saya.
Nick Cox

@NickCox Anda benar sekali, terima kasih atas klarifikasi: Saya punya data mingguan dan menginginkan data harian karena saya punya data lain setiap hari (yaitu variabel meteorologi, mortalitas, polusi udara, dll.).
COOLSerdash

3
Pertanyaan saya sendiri adalah menanyakan mengapa Anda ingin melakukan ini. Saya menduga, seperti di atas, bahwa Anda memiliki beberapa data harian dan menginginkan semuanya dengan dasar yang sama. Jika demikian, pertimbangkan beberapa pengurangan data harian menjadi minimum, rata-rata, rata-rata, lebih dari beberapa minggu atau apa pun yang masuk akal secara ilmiah. Mengumpulkan data mingguan menjadi data harian hanya akan menciptakan masalah dengan ketergantungan yang diperkenalkan dan tingkat kebebasan yang terlalu optimistis yang akan membuat sulit penyesuaian dan penilaian model.
Nick Cox

@Nick Cox itu benar-benar "menebak-nebak", tetapi pada informasi yang diberikan tampaknya menjadi apa yang OP inginkan.
Glen_b -Reinstate Monica

2
Pendekatan konservatif lainnya adalah dengan membagi jumlah mingguan dengan jumlah hari. Saya tahu ada anggapan bahwa proses yang sebenarnya akan lebih lancar dari itu, tetapi itu akan mempertahankan mean.
Nick Cox

3

Saya akan menggabungkan beberapa komentar tambahan sebagai jawaban lain.

Diperlukan beberapa saat agar struktur proyek ini menjadi lebih jelas. Mengingat bahwa influenza sekarang dinyatakan sebagai satu kovariat di antara beberapa, apa yang Anda lakukan dengan itu tampaknya tidak begitu penting, atau setidaknya tidak pantas untuk skeptis yang diungkapkan dalam beberapa komentar saya sebelumnya. Karena segala hal lainnya dilakukan setiap hari, mengurangi segalanya menjadi berminggu-minggu akan membuang terlalu banyak detail.

Fokus asli dari pertanyaan tetap, pada interpolasi yang mempertahankan rata-rata mingguan di mana satu (ekstrim) jawaban adalah bahwa rata-rata mingguan mempertahankan rata-rata mingguan. Karena tidak mengejutkan tampaknya tidak menarik atau tidak realistis, metode interpolasi lain tampaknya lebih menarik dan / atau metode imputasi seperti yang diusulkan oleh @Spacedman. (Cukup apakah itu imputasi dengan rasa temporal atau interpolasi dengan penambahan rasa stokastik saya tidak jelas.)

Dua pemikiran spesifik lebih lanjut:

  • Mengambil nilai-nilai mingguan (dibagi dengan jumlah hari) dan kemudian menghaluskan dengan rata-rata tertimbang kemungkinan dalam praktiknya untuk mempertahankan nilai rata-rata hingga perkiraan yang baik.

  • Karena jumlah kasus influenza diperhitungkan, penghalusan jumlah root atau log dan kemudian transformasi kembali mungkin bekerja lebih baik daripada hanya penghalusan hitungan.

Dengan menggunakan situs kami, Anda mengakui telah membaca dan memahami Kebijakan Cookie dan Kebijakan Privasi kami.
Licensed under cc by-sa 3.0 with attribution required.