Anda juga dapat mencoba paket berikut: DMwR .
Itu gagal pada kasus 3 NN, memberikan 'Kesalahan dalam knnImputation (x, k = 3): Kasus lengkap tidak cukup untuk menghitung tetangga.'
Namun, mencoba 2 memberi.
> knnImputation(x,k=2)
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] -0.59091360 -1.2698175 0.5556009 -0.1327224 -0.8325065 0.71664000
[2,] -1.27255074 -0.7853602 0.7261897 0.2969900 0.2969556 -0.44612831
[3,] 0.55473981 0.4748735 0.5158498 -0.9493917 -1.5187722 -0.99377854
[4,] -0.47797654 0.1647818 0.6167311 -0.5149731 0.5240514 -0.46027809
[5,] -1.08767831 -0.3785608 0.6659499 -0.7223724 -0.9512409 -1.60547053
[6,] -0.06153279 0.9486815 -0.5464601 0.1544475 0.2835521 -0.82250221
[7,] -0.82536029 -0.2906253 -3.0284281 -0.8473210 0.7985286 -0.09751927
[8,] -1.15366189 0.5341000 -1.0109258 -1.5900281 0.2742328 0.29039928
[9,] -1.49504465 -0.5419533 0.5766574 -1.2412777 -1.4089572 -0.71069839
[10,] -0.35935440 -0.2622265 0.4048126 -2.0869817 0.2682486 0.16904559
[,7] [,8] [,9] [,10]
[1,] 0.58027159 -1.0669137 0.48670802 0.5824858
[2,] -0.48314440 -1.0532693 -0.34030385 -1.1041681
[3,] -2.81996446 0.3191438 -0.48117020 -0.0352633
[4,] -0.55080515 -1.0620243 -0.51383557 0.3161907
[5,] -0.56808769 -0.3696951 0.35549191 0.3202675
[6,] -0.25043479 -1.0389393 0.07810902 0.5251606
[7,] -0.41667318 0.8809541 -0.04613332 -1.1586756
[8,] -0.06898363 -1.0736161 0.62698065 -1.0373835
[9,] 0.30051583 -0.2936140 0.31417921 -1.4155193
[10,] -0.68180034 -1.0789745 0.58290920 -1.0197956
Anda dapat menguji pengamatan yang cukup menggunakan complete.cases (x), di mana nilai itu harus setidaknya k.
Salah satu cara untuk mengatasi masalah ini adalah dengan melonggarkan persyaratan Anda (yaitu baris yang kurang lengkap), dengan 1) meningkatkan ambang NA, atau sebagai alternatif, 2) meningkatkan jumlah pengamatan Anda.
Inilah yang pertama:
> x = matrix(rnorm(100),10,10)
> x.missing = x > 2
> x[x.missing] = NA
> complete.cases(x)
[1] TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
> knnImputation(x,k=3)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 0.86882569 -0.2409922 0.3859031 0.5818927 -1.50310330 0.8752261 -0.5173105 -2.18244988 -0.28817656 -0.63941237
[2,] 1.54114079 0.7227511 0.7856277 0.8512048 -1.32442954 -2.1668744 0.7017532 -0.40086348 -0.41251883 0.42924986
[3,] 0.60062917 -0.5955623 0.6192783 -0.3836310 0.06871570 1.7804657 0.5965411 -1.62625036 1.27706937 0.72860273
[4,] -0.07328279 -0.1738157 1.4965579 -1.1686115 -0.06954318 -1.0171604 -0.3283916 0.63493884 0.72039689 -0.20889111
[5,] 0.78747874 -0.8607320 0.4828322 0.6558960 -0.22064430 0.2001473 0.7725701 0.06155196 0.09011719 -1.01902968
[6,] 0.17988720 -0.8520000 -0.5911523 1.8100573 -0.56108621 0.0151522 -0.2484345 -0.80695513 -0.18532984 -1.75115335
[7,] 1.03943492 0.4880532 -2.7588922 -0.1336166 -1.28424057 1.2871333 0.7595750 -0.55615677 -1.67765572 -0.05440992
[8,] 1.12394474 1.4890366 -1.6034648 -1.4315445 -0.23052386 -0.3536677 -0.8694188 -0.53689507 -1.11510406 -1.39108817
[9,] -0.30393916 0.6216156 0.1559639 1.2297105 -0.29439390 1.8224512 -0.4457441 -0.32814665 0.55487894 -0.22602598
[10,] 1.18424722 -0.1816049 -2.2975095 -0.7537477 0.86647524 -0.8710603 0.3351710 -0.79632184 -0.56254688 -0.77449398
> x
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 0.86882569 -0.2409922 0.3859031 0.5818927 -1.5031033 0.8752261 -0.5173105 -2.18244988 -0.28817656 -0.63941237
[2,] 1.54114079 0.7227511 0.7856277 0.8512048 -1.3244295 -2.1668744 0.7017532 -0.40086348 -0.41251883 0.42924986
[3,] 0.60062917 -0.5955623 0.6192783 -0.3836310 0.0687157 1.7804657 0.5965411 -1.62625036 1.27706937 0.72860273
[4,] -0.07328279 -0.1738157 1.4965579 -1.1686115 NA -1.0171604 -0.3283916 0.63493884 0.72039689 -0.20889111
[5,] 0.78747874 -0.8607320 0.4828322 NA -0.2206443 0.2001473 0.7725701 0.06155196 0.09011719 -1.01902968
[6,] 0.17988720 -0.8520000 -0.5911523 1.8100573 -0.5610862 0.0151522 -0.2484345 -0.80695513 -0.18532984 -1.75115335
[7,] 1.03943492 0.4880532 -2.7588922 -0.1336166 -1.2842406 1.2871333 0.7595750 -0.55615677 -1.67765572 -0.05440992
[8,] 1.12394474 1.4890366 -1.6034648 -1.4315445 -0.2305239 -0.3536677 -0.8694188 -0.53689507 -1.11510406 -1.39108817
[9,] -0.30393916 0.6216156 0.1559639 1.2297105 -0.2943939 1.8224512 -0.4457441 -0.32814665 0.55487894 -0.22602598
[10,] 1.18424722 -0.1816049 -2.2975095 -0.7537477 0.8664752 -0.8710603 0.3351710 -0.79632184 -0.56254688 -0.77449398
di sini adalah contoh ke-2 ...
x = matrix(rnorm(1000),100,10)
x.missing = x > 1
x[x.missing] = NA
complete.cases(x)
[1] TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE
[22] FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[43] TRUE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[64] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
Setidaknya k = 3 baris lengkap terpenuhi, sehingga dapat menyalahkan untuk k = 3.
> head(knnImputation(x,k=3))
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 0.01817557 -2.8141502 0.3929944 0.1495092 -1.7218396 0.4159133 -0.8438809 0.6599224 -0.02451113 -1.14541016
[2,] 0.51969964 -0.4976021 -0.1495392 -0.6448184 -0.6066386 -1.6210476 -0.3118440 0.2477855 -0.30986749 0.32424673
...