Latar Belakang
Dalam sebuah makalah dari Epstein (1991): Pada memperoleh nilai-nilai klimatologis harian dari rata-rata bulanan , formulasi dan algoritma untuk menghitung interpolasi Fourier untuk nilai periodik dan genap spasi diberikan.
Di koran, tujuannya adalah untuk mendapatkan nilai harian dari sarana bulanan dengan interpolasi.
Singkatnya, diasumsikan bahwa nilai harian yang tidak diketahui dapat diwakili oleh jumlah komponen harmonik: Dalam makalah (waktu) dinyatakan dalam bulan. t
Setelah beberapa penurunan, ditunjukkan bahwa persyaratan dapat dihitung dengan: Di mana menunjukkan sarana bulanan dan bulan.
Harzallah (1995) merangkum pendekatan ini sebagai berikut: "Interpolasi dilakukan dengan menambahkan nol pada koefisien spektral data dan dengan melakukan transformasi Fourier terbalik ke koefisien yang dihasilkan. Metode ini setara dengan menerapkan filter persegi panjang ke koefisien Fourier . "
Pertanyaan
Tujuan saya adalah menggunakan metodologi di atas untuk interpolasi sarana mingguan untuk mendapatkan data harian (lihat pertanyaan saya sebelumnya ). Singkatnya, saya memiliki rata-rata 835 data mingguan (lihat contoh dataset di bagian bawah pertanyaan). Ada beberapa hal yang tidak saya mengerti sebelum saya dapat menerapkan pendekatan yang diuraikan di atas:
- Bagaimana rumus harus diubah untuk situasi saya (nilai mingguan dan bukan bulanan)?
- Bagaimana waktu diungkapkan? Saya berasumsi (atau dengan titik data secara umum), apakah itu benar?
- Mengapa penulis menghitung 7 istilah (yaitu )? Berapa banyak syarat yang harus saya pertimbangkan?
- Saya mengerti bahwa pertanyaannya mungkin dapat diselesaikan dengan menggunakan pendekatan regresi dan menggunakan prediksi untuk interpolasi (terima kasih kepada Nick). Namun, ada beberapa hal yang tidak jelas bagi saya: Berapa banyak istilah harmonik yang harus dimasukkan dalam regresi? Dan periode apa yang harus saya ambil? Bagaimana regresi dapat dilakukan untuk memastikan bahwa rata-rata mingguan dipertahankan (karena saya tidak ingin kecocokan harmonis yang tepat dengan data)?
Dengan menggunakan pendekatan regresi (yang juga dijelaskan dalam makalah ini ), saya berhasil mendapatkan kecocokan harmonis yang tepat dengan data ( dalam contoh saya akan berjalan melalui , jadi saya memasang 417 istilah). Bagaimana pendekatan ini dapat dimodifikasi - jika mungkin - untuk mencapai konservasi cara mingguan? Mungkin dengan menerapkan faktor koreksi untuk setiap istilah regresi?
Plot harmonik yang pas adalah:
EDIT
Menggunakan paket sinyal dan interp1
fungsinya, inilah yang saya berhasil lakukan dengan menggunakan contoh data yang diatur dari bawah (terima kasih banyak kepada @noumenal). Saya menggunakan q=7
karena kami memiliki data mingguan:
# Set up the time scale
daily.ts <- seq(from=as.Date("1995-01-01"), to=as.Date("2010-12-31"), by="day")
# Set up data frame
ts.frame <- data.frame(daily.ts=daily.ts, wdayno=as.POSIXlt(daily.ts)$wday,
yearday = 1:5844,
no.influ.cases=NA)
# Add the data from the example dataset called "my.dat"
ts.frame$no.influ.cases[ts.frame$wdayno==3] <- my.dat$case
# Interpolation
case.interp1 <- interp1(x=ts.frame$yearday[!is.na(ts.frame$no.influ.case)],y=(ts.frame$no.influ.cases[!is.na(ts.frame$no.influ.case)]),xi=ts.frame$yearday, method = c("cubic"))
# Plot subset for better interpretation
par(bg="white", cex=1.2, las=1)
plot((ts.frame$no.influ.cases)~ts.frame$yearday, pch=20,
col=grey(0.4),
cex=1, las=1,xlim=c(0,400), xlab="Day", ylab="Influenza cases")
lines(case.interp1, col="steelblue", lwd=1)
Ada dua masalah di sini:
- Kurva sepertinya pas "terlalu bagus": itu melewati setiap titik
- Cara mingguan tidak dilestarikan
Dataset contoh
structure(list(date = structure(c(9134, 9141, 9148, 9155, 9162,
9169, 9176, 9183, 9190, 9197, 9204, 9211, 9218, 9225, 9232, 9239,
9246, 9253, 9260, 9267, 9274, 9281, 9288, 9295, 9302, 9309, 9316,
9323, 9330, 9337, 9344, 9351, 9358, 9365, 9372, 9379, 9386, 9393,
9400, 9407, 9414, 9421, 9428, 9435, 9442, 9449, 9456, 9463, 9470,
9477, 9484, 9491, 9498, 9505, 9512, 9519, 9526, 9533, 9540, 9547,
9554, 9561, 9568, 9575, 9582, 9589, 9596, 9603, 9610, 9617, 9624,
9631, 9638, 9645, 9652, 9659, 9666, 9673, 9680, 9687, 9694, 9701,
9708, 9715, 9722, 9729, 9736, 9743, 9750, 9757, 9764, 9771, 9778,
9785, 9792, 9799, 9806, 9813, 9820, 9827, 9834, 9841, 9848, 9855,
9862, 9869, 9876, 9883, 9890, 9897, 9904, 9911, 9918, 9925, 9932,
9939, 9946, 9953, 9960, 9967, 9974, 9981, 9988, 9995, 10002,
10009, 10016, 10023, 10030, 10037, 10044, 10051, 10058, 10065,
10072, 10079, 10086, 10093, 10100, 10107, 10114, 10121, 10128,
10135, 10142, 10149, 10156, 10163, 10170, 10177, 10184, 10191,
10198, 10205, 10212, 10219, 10226, 10233, 10240, 10247, 10254,
10261, 10268, 10275, 10282, 10289, 10296, 10303, 10310, 10317,
10324, 10331, 10338, 10345, 10352, 10359, 10366, 10373, 10380,
10387, 10394, 10401, 10408, 10415, 10422, 10429, 10436, 10443,
10450, 10457, 10464, 10471, 10478, 10485, 10492, 10499, 10506,
10513, 10520, 10527, 10534, 10541, 10548, 10555, 10562, 10569,
10576, 10583, 10590, 10597, 10604, 10611, 10618, 10625, 10632,
10639, 10646, 10653, 10660, 10667, 10674, 10681, 10688, 10695,
10702, 10709, 10716, 10723, 10730, 10737, 10744, 10751, 10758,
10765, 10772, 10779, 10786, 10793, 10800, 10807, 10814, 10821,
10828, 10835, 10842, 10849, 10856, 10863, 10870, 10877, 10884,
10891, 10898, 10905, 10912, 10919, 10926, 10933, 10940, 10947,
10954, 10961, 10968, 10975, 10982, 10989, 10996, 11003, 11010,
11017, 11024, 11031, 11038, 11045, 11052, 11059, 11066, 11073,
11080, 11087, 11094, 11101, 11108, 11115, 11122, 11129, 11136,
11143, 11150, 11157, 11164, 11171, 11178, 11185, 11192, 11199,
11206, 11213, 11220, 11227, 11234, 11241, 11248, 11255, 11262,
11269, 11276, 11283, 11290, 11297, 11304, 11311, 11318, 11325,
11332, 11339, 11346, 11353, 11360, 11367, 11374, 11381, 11388,
11395, 11402, 11409, 11416, 11423, 11430, 11437, 11444, 11451,
11458, 11465, 11472, 11479, 11486, 11493, 11500, 11507, 11514,
11521, 11528, 11535, 11542, 11549, 11556, 11563, 11570, 11577,
11584, 11591, 11598, 11605, 11612, 11619, 11626, 11633, 11640,
11647, 11654, 11661, 11668, 11675, 11682, 11689, 11696, 11703,
11710, 11717, 11724, 11731, 11738, 11745, 11752, 11759, 11766,
11773, 11780, 11787, 11794, 11801, 11808, 11815, 11822, 11829,
11836, 11843, 11850, 11857, 11864, 11871, 11878, 11885, 11892,
11899, 11906, 11913, 11920, 11927, 11934, 11941, 11948, 11955,
11962, 11969, 11976, 11983, 11990, 11997, 12004, 12011, 12018,
12025, 12032, 12039, 12046, 12053, 12060, 12067, 12074, 12081,
12088, 12095, 12102, 12109, 12116, 12123, 12130, 12137, 12144,
12151, 12158, 12165, 12172, 12179, 12186, 12193, 12200, 12207,
12214, 12221, 12228, 12235, 12242, 12249, 12256, 12263, 12270,
12277, 12284, 12291, 12298, 12305, 12312, 12319, 12326, 12333,
12340, 12347, 12354, 12361, 12368, 12375, 12382, 12389, 12396,
12403, 12410, 12417, 12424, 12431, 12438, 12445, 12452, 12459,
12466, 12473, 12480, 12487, 12494, 12501, 12508, 12515, 12522,
12529, 12536, 12543, 12550, 12557, 12564, 12571, 12578, 12585,
12592, 12599, 12606, 12613, 12620, 12627, 12634, 12641, 12648,
12655, 12662, 12669, 12676, 12683, 12690, 12697, 12704, 12711,
12718, 12725, 12732, 12739, 12746, 12753, 12760, 12767, 12774,
12781, 12788, 12795, 12802, 12809, 12816, 12823, 12830, 12837,
12844, 12851, 12858, 12865, 12872, 12879, 12886, 12893, 12900,
12907, 12914, 12921, 12928, 12935, 12942, 12949, 12956, 12963,
12970, 12977, 12984, 12991, 12998, 13005, 13012, 13019, 13026,
13033, 13040, 13047, 13054, 13061, 13068, 13075, 13082, 13089,
13096, 13103, 13110, 13117, 13124, 13131, 13138, 13145, 13152,
13159, 13166, 13173, 13180, 13187, 13194, 13201, 13208, 13215,
13222, 13229, 13236, 13243, 13250, 13257, 13264, 13271, 13278,
13285, 13292, 13299, 13306, 13313, 13320, 13327, 13334, 13341,
13348, 13355, 13362, 13369, 13376, 13383, 13390, 13397, 13404,
13411, 13418, 13425, 13432, 13439, 13446, 13453, 13460, 13467,
13474, 13481, 13488, 13495, 13502, 13509, 13516, 13523, 13530,
13537, 13544, 13551, 13558, 13565, 13572, 13579, 13586, 13593,
13600, 13607, 13614, 13621, 13628, 13635, 13642, 13649, 13656,
13663, 13670, 13677, 13684, 13691, 13698, 13705, 13712, 13719,
13726, 13733, 13740, 13747, 13754, 13761, 13768, 13775, 13782,
13789, 13796, 13803, 13810, 13817, 13824, 13831, 13838, 13845,
13852, 13859, 13866, 13873, 13880, 13887, 13894, 13901, 13908,
13915, 13922, 13929, 13936, 13943, 13950, 13957, 13964, 13971,
13978, 13985, 13992, 13999, 14006, 14013, 14020, 14027, 14034,
14041, 14048, 14055, 14062, 14069, 14076, 14083, 14090, 14097,
14104, 14111, 14118, 14125, 14132, 14139, 14146, 14153, 14160,
14167, 14174, 14181, 14188, 14195, 14202, 14209, 14216, 14223,
14230, 14237, 14244, 14251, 14258, 14265, 14272, 14279, 14286,
14293, 14300, 14307, 14314, 14321, 14328, 14335, 14342, 14349,
14356, 14363, 14370, 14377, 14384, 14391, 14398, 14405, 14412,
14419, 14426, 14433, 14440, 14447, 14454, 14461, 14468, 14475,
14482, 14489, 14496, 14503, 14510, 14517, 14524, 14531, 14538,
14545, 14552, 14559, 14566, 14573, 14580, 14587, 14594, 14601,
14608, 14615, 14622, 14629, 14636, 14643, 14650, 14657, 14664,
14671, 14678, 14685, 14692, 14699, 14706, 14713, 14720, 14727,
14734, 14741, 14748, 14755, 14762, 14769, 14776, 14783, 14790,
14797, 14804, 14811, 14818, 14825, 14832, 14839, 14846, 14853,
14860, 14867, 14874, 14881, 14888, 14895, 14902, 14909, 14916,
14923, 14930, 14937, 14944, 14951, 14958, 14965, 14972), class = "Date"),
cases = c(168L, 199L, 214L, 230L, 267L, 373L, 387L, 443L,
579L, 821L, 1229L, 1014L, 831L, 648L, 257L, 203L, 137L, 78L,
82L, 69L, 45L, 51L, 45L, 63L, 55L, 54L, 52L, 27L, 24L, 12L,
10L, 22L, 42L, 32L, 52L, 82L, 95L, 91L, 104L, 143L, 114L,
100L, 83L, 113L, 145L, 175L, 222L, 258L, 384L, 755L, 976L,
879L, 846L, 1004L, 801L, 799L, 680L, 530L, 410L, 302L, 288L,
234L, 269L, 245L, 240L, 176L, 188L, 128L, 96L, 59L, 63L,
44L, 52L, 39L, 50L, 36L, 40L, 48L, 32L, 39L, 28L, 29L, 16L,
20L, 25L, 25L, 48L, 57L, 76L, 117L, 107L, 91L, 90L, 83L,
76L, 86L, 104L, 101L, 116L, 120L, 185L, 290L, 537L, 485L,
561L, 1142L, 1213L, 1235L, 1085L, 1052L, 987L, 918L, 746L,
620L, 396L, 280L, 214L, 148L, 148L, 94L, 107L, 69L, 55L,
69L, 47L, 43L, 49L, 30L, 42L, 51L, 41L, 39L, 40L, 38L, 22L,
37L, 26L, 40L, 56L, 54L, 74L, 99L, 114L, 114L, 120L, 114L,
123L, 131L, 170L, 147L, 163L, 163L, 160L, 158L, 163L, 124L,
115L, 176L, 171L, 214L, 320L, 507L, 902L, 1190L, 1272L, 1282L,
1146L, 896L, 597L, 434L, 216L, 141L, 101L, 86L, 65L, 55L,
35L, 49L, 29L, 55L, 53L, 57L, 34L, 43L, 42L, 13L, 17L, 20L,
27L, 36L, 47L, 64L, 77L, 82L, 82L, 95L, 107L, 96L, 106L,
93L, 114L, 102L, 116L, 128L, 123L, 212L, 203L, 165L, 267L,
550L, 761L, 998L, 1308L, 1613L, 1704L, 1669L, 1296L, 975L,
600L, 337L, 259L, 145L, 91L, 70L, 79L, 63L, 58L, 51L, 53L,
39L, 49L, 33L, 47L, 56L, 32L, 43L, 47L, 19L, 32L, 18L, 34L,
39L, 63L, 57L, 55L, 69L, 76L, 103L, 99L, 108L, 131L, 113L,
106L, 122L, 138L, 136L, 175L, 207L, 324L, 499L, 985L, 1674L,
1753L, 1419L, 1105L, 821L, 466L, 274L, 180L, 143L, 82L, 101L,
72L, 55L, 71L, 50L, 33L, 26L, 25L, 27L, 21L, 24L, 24L, 20L,
18L, 18L, 25L, 23L, 13L, 10L, 16L, 9L, 12L, 16L, 25L, 31L,
36L, 40L, 36L, 47L, 32L, 46L, 75L, 63L, 49L, 90L, 83L, 101L,
78L, 79L, 98L, 131L, 83L, 122L, 179L, 334L, 544L, 656L, 718L,
570L, 323L, 220L, 194L, 125L, 95L, 77L, 46L, 42L, 29L, 35L,
21L, 29L, 16L, 14L, 19L, 15L, 19L, 18L, 21L, 10L, 14L, 7L,
7L, 5L, 9L, 14L, 11L, 18L, 22L, 39L, 36L, 46L, 44L, 37L,
30L, 39L, 37L, 45L, 71L, 59L, 57L, 80L, 68L, 88L, 72L, 74L,
208L, 357L, 621L, 839L, 964L, 835L, 735L, 651L, 400L, 292L,
198L, 85L, 64L, 41L, 40L, 23L, 18L, 14L, 22L, 9L, 19L, 8L,
14L, 12L, 15L, 14L, 4L, 6L, 7L, 7L, 8L, 13L, 10L, 19L, 17L,
20L, 22L, 40L, 37L, 45L, 34L, 26L, 35L, 67L, 49L, 77L, 82L,
80L, 104L, 88L, 49L, 73L, 113L, 142L, 152L, 206L, 293L, 513L,
657L, 919L, 930L, 793L, 603L, 323L, 202L, 112L, 55L, 31L,
27L, 15L, 15L, 6L, 13L, 21L, 10L, 11L, 9L, 8L, 11L, 7L, 5L,
1L, 4L, 7L, 2L, 6L, 12L, 14L, 21L, 29L, 32L, 26L, 22L, 44L,
39L, 47L, 44L, 93L, 145L, 289L, 456L, 685L, 548L, 687L, 773L,
575L, 355L, 248L, 179L, 129L, 122L, 103L, 72L, 72L, 36L,
26L, 31L, 12L, 14L, 14L, 14L, 7L, 8L, 2L, 7L, 8L, 9L, 26L,
10L, 13L, 13L, 5L, 5L, 3L, 6L, 1L, 10L, 6L, 7L, 17L, 12L,
21L, 32L, 29L, 18L, 22L, 24L, 38L, 52L, 53L, 73L, 49L, 52L,
70L, 77L, 95L, 135L, 163L, 303L, 473L, 823L, 1126L, 1052L,
794L, 459L, 314L, 252L, 111L, 55L, 35L, 14L, 30L, 21L, 16L,
9L, 11L, 6L, 6L, 8L, 9L, 9L, 10L, 15L, 15L, 11L, 6L, 3L,
8L, 4L, 7L, 7L, 13L, 10L, 23L, 24L, 36L, 25L, 34L, 37L, 46L,
39L, 37L, 55L, 65L, 54L, 60L, 82L, 55L, 53L, 61L, 52L, 75L,
92L, 121L, 170L, 199L, 231L, 259L, 331L, 357L, 262L, 154L,
77L, 34L, 41L, 21L, 17L, 16L, 7L, 15L, 11L, 7L, 5L, 6L, 13L,
7L, 6L, 8L, 7L, 1L, 11L, 9L, 3L, 9L, 9L, 8L, 15L, 19L, 16L,
10L, 12L, 26L, 35L, 35L, 41L, 34L, 30L, 36L, 43L, 23L, 55L,
107L, 141L, 217L, 381L, 736L, 782L, 663L, 398L, 182L, 137L,
79L, 28L, 26L, 16L, 14L, 8L, 4L, 4L, 6L, 6L, 11L, 4L, 5L,
7L, 7L, 6L, 8L, 2L, 3L, 3L, 1L, 1L, 3L, 3L, 2L, 8L, 8L, 11L,
10L, 11L, 8L, 24L, 25L, 25L, 33L, 36L, 51L, 61L, 74L, 92L,
89L, 123L, 402L, 602L, 524L, 494L, 406L, 344L, 329L, 225L,
136L, 136L, 84L, 55L, 55L, 42L, 19L, 28L, 8L, 7L, 2L, 7L,
6L, 4L, 3L, 5L, 3L, 3L, 0L, 1L, 2L, 3L, 2L, 1L, 2L, 2L, 9L,
4L, 9L, 10L, 18L, 15L, 13L, 12L, 10L, 19L, 15L, 22L, 23L,
34L, 43L, 53L, 47L, 57L, 328L, 552L, 787L, 736L, 578L, 374L,
228L, 161L, 121L, 96L, 58L, 50L, 37L, 14L, 9L, 6L, 15L, 12L,
9L, 1L, 6L, 4L, 7L, 7L, 3L, 6L, 9L, 15L, 22L, 28L, 34L, 62L,
54L, 75L, 65L, 58L, 57L, 60L, 37L, 47L, 60L, 89L, 90L, 193L,
364L, 553L, 543L, 676L, 550L, 403L, 252L, 140L, 125L, 99L,
63L, 63L, 76L, 85L, 68L, 67L, 38L, 25L, 24L, 11L, 9L, 9L,
4L, 8L, 4L, 6L, 5L, 2L, 6L, 4L, 4L, 1L, 5L, 4L, 1L, 2L, 2L,
2L, 2L, 3L, 4L, 4L, 7L, 5L, 2L, 10L, 11L, 17L, 11L, 16L,
15L, 11L, 12L, 21L, 20L, 25L, 46L, 51L, 90L, 123L)), .Names = c("date",
"cases"), row.names = c(NA, -835L), class = "data.frame")