Untuk membuat bagan ini, saya membuat sampel acak dengan ukuran berbeda dari distribusi normal dengan mean = 0 dan sd = 1. Interval kepercayaan kemudian dihitung menggunakan cutoff alfa mulai dari 0,001 hingga 0,999 (garis merah) dengan fungsi t.test (), kemungkinan profil dihitung menggunakan kode di bawah ini yang saya temukan dalam catatan kuliah yang dimasukkan ke baris (saya bisa ' t menemukan tautan saat ini Edit: Ditemukan ), ini ditunjukkan oleh garis biru. Garis hijau menunjukkan kerapatan yang dinormalisasi menggunakan fungsi R kerapatan () dan data ditampilkan oleh plot kotak di bagian bawah setiap bagan. Di sebelah kanan adalah plot ulat dari interval kepercayaan 95% (merah) dan 1/20 dari interval kemungkinan maksimal (biru).
Kode R yang digunakan untuk kemungkinan profil:
#mn=mean(dat)
muVals <- seq(low,high, length = 1000)
likVals <- sapply(muVals,
function(mu){
(sum((dat - mu)^2) /
sum((dat - mn)^2)) ^ (-n/2)
}
)
Pertanyaan khusus saya adalah apakah ada hubungan yang diketahui antara kedua jenis interval ini dan mengapa interval kepercayaan tampaknya lebih konservatif untuk semua kasus kecuali ketika n = 3. Komentar / jawaban tentang apakah perhitungan saya valid (dan cara yang lebih baik untuk melakukan ini) dan hubungan umum antara kedua jenis interval ini juga diinginkan.
Kode R:
samp.size=c(3,4,5,10,20,1000)
cnt2<-1
ints=matrix(nrow=length(samp.size),ncol=4)
layout(matrix(c(1,2,7,3,4,7,5,6,7),nrow=3,ncol=3, byrow=T))
par(mar=c(5.1,4.1,4.1,4.1))
for(j in samp.size){
#set.seed(200)
dat<-rnorm(j,0,1)
vals<-seq(.001,.999, by=.001)
cis<-matrix(nrow=length(vals),ncol=3)
cnt<-1
for(ci in vals){
x<-t.test(dat,conf.level=ci)$conf.int[1:2]
cis[cnt,]<-cbind(ci,x[1],x[2])
cnt<-cnt+1
}
mn=mean(dat)
n=length(dat)
high<-max(c(dat,cis[970,3]), na.rm=T)
low<-min(c(dat,cis[970,2]), na.rm=T)
#high<-max(abs(c(dat,cis[970,2],cis[970,3])), na.rm=T)
#low<--high
muVals <- seq(low,high, length = 1000)
likVals <- sapply(muVals,
function(mu){
(sum((dat - mu)^2) /
sum((dat - mn)^2)) ^ (-n/2)
}
)
plot(muVals, likVals, type = "l", lwd=3, col="Blue", xlim=c(low,high),
ylim=c(-.1,1), ylab="Likelihood/Alpha", xlab="Values",
main=c(paste("n=",n),
"True Mean=0 True sd=1",
paste("Sample Mean=", round(mn,2), "Sample sd=", round(sd(dat),2)))
)
axis(side=4,at=seq(0,1,length=6),
labels=round(seq(0,max(density(dat)$y),length=6),2))
mtext(4, text="Density", line=2.2,cex=.8)
lines(density(dat)$x,density(dat)$y/max(density(dat)$y), lwd=2, col="Green")
lines(range(muVals[likVals>1/20]), c(1/20,1/20), col="Blue", lwd=4)
lines(cis[,2],1-cis[,1], lwd=3, col="Red")
lines(cis[,3],1-cis[,1], lwd=3, col="Red")
lines(cis[which(round(cis[,1],3)==.95),2:3],rep(.05,2),
lty=3, lwd=4, col="Red")
abline(v=mn, lty=2, lwd=2)
#abline(h=.05, lty=3, lwd=4, col="Red")
abline(h=0, lty=1, lwd=3)
abline(v=0, lty=3, lwd=1)
boxplot(dat,at=-.1,add=T, horizontal=T, boxwex=.1, col="Green")
stripchart(dat,at=-.1,add=T, pch=16, cex=1.1)
legend("topleft", legend=c("Likelihood"," Confidence Interval", "Sample Density"),
col=c("Blue","Red", "Green"), lwd=3,bty="n")
ints[cnt2,]<-cbind(range(muVals[likVals>1/20])[1],range(muVals[likVals>1/20])[2],
cis[which(round(cis[,1],3)==.95),2],cis[which(round(cis[,1],3)==.95),3])
cnt2<-cnt2+1
}
par(mar=c(5.1,4.1,4.1,2.1))
plot(0,0, type="n", ylim=c(1,nrow(ints)+.5), xlim=c(min(ints),max(ints)),
yaxt="n", ylab="Sample Size", xlab="Values")
for(i in 1:nrow(ints)){
segments(ints[i,1],i+.2,ints[i,2],i+.2, lwd=3, col="Blue")
segments(ints[i,3],i+.3,ints[i,4],i+.3, lwd=3, col="Red")
}
axis(side=2, at=seq(1.25,nrow(ints)+.25,by=1), samp.size)
mn
adalah salah ketik untukmu
, dan tidakmean(dat)
. Seperti yang saya katakan di komentar untuk pertanyaan Anda yang lain , ini harus jelas dari definisi halaman 23.