Jawaban yang lebih serius untuk melanjutkan pertanyaan ini dan terutama minat terus-menerus @ silverfish. Salah satu pendekatan untuk menjawab pertanyaan seperti ini adalah menjalankan beberapa simulasi untuk membandingkan. Di bawah ini adalah beberapa kode R yang mensimulasikan data di bawah berbagai alternatif dan melakukan beberapa tes normalitas dan membandingkan daya (dan interval kepercayaan pada daya karena daya diperkirakan melalui simulasi). Saya mengubah ukuran sampel agak karena tidak menarik ketika banyak kekuatan mendekati 100% atau 5%, saya menemukan angka bulat yang memberi kekuatan mendekati 80%. Siapa pun yang tertarik dapat dengan mudah mengambil kode ini dan memodifikasinya untuk asumsi yang berbeda, berbagai alternatif, dll.
Anda dapat melihat bahwa ada beberapa alternatif yang beberapa tesnya lebih baik dan yang lainnya lebih buruk. Pertanyaan pentingnya adalah alternatif mana yang paling realistis untuk pertanyaan / bidang ilmiah Anda. Ini benar-benar harus ditindaklanjuti dengan simulasi pengaruh jenis ketidaknormalan minat pada tes lain yang sedang dilakukan. Beberapa jenis ketidaknormalan ini sangat memengaruhi tes berbasis normal lainnya, yang lain tidak terlalu memengaruhi mereka.
> library(nortest)
>
> simfun1 <- function(fun=function(n) rnorm(n), n=250) {
+ x <- fun(n)
+ c(sw=shapiro.test(x)$p.value, sf=sf.test(x)$p.value, ad=ad.test(x)$p.value,
+ cvm=cvm.test(x)$p.value, lillie=lillie.test(x)$p.value,
+ pearson=pearson.test(x)$p.value, snow=0)
+ }
>
> ### Test size using null hypothesis near true
>
> out1 <- replicate(10000, simfun1())
> apply(out1, 1, function(x) mean(x<=0.05))
sw sf ad cvm lillie pearson snow
0.0490 0.0520 0.0521 0.0509 0.0531 0.0538 1.0000
> apply(out1, 1, function(x) prop.test(sum(x<=0.05),length(x))$conf.int) #$
sw sf ad cvm lillie pearson snow
[1,] 0.04489158 0.04776981 0.04786582 0.04671398 0.04882619 0.04949870 0.9995213
[2,] 0.05345887 0.05657820 0.05668211 0.05543493 0.05772093 0.05844785 1.0000000
>
> ### Test again with mean and sd different
>
> out2 <- replicate(10000, simfun1(fun=function(n) rnorm(n,100,5)))
> apply(out2, 1, function(x) mean(x<=0.05))
sw sf ad cvm lillie pearson snow
0.0482 0.0513 0.0461 0.0477 0.0515 0.0506 1.0000
> apply(out2, 1, function(x) prop.test(sum(x<=0.05),length(x))$conf.int) #$
sw sf ad cvm lillie pearson snow
[1,] 0.04412478 0.04709785 0.04211345 0.04364569 0.04728982 0.04642612 0.9995213
[2,] 0.05262633 0.05585073 0.05043938 0.05210583 0.05605860 0.05512303 1.0000000
>
> #### now for the power under different forms of non-normality
>
> ## heavy tails, t(3)
> rt3 <- function(n) rt(n, df=3)
>
> out3 <- replicate(10000, simfun1(fun=rt3, n=75))
There were 50 or more warnings (use warnings() to see the first 50)
> round(apply(out3, 1, function(x) mean(x<=0.05, na.rm=TRUE)),3)
sw sf ad cvm lillie pearson snow
0.788 0.831 0.756 0.726 0.624 0.440 1.000
> round(apply(out3, 1, function(x){
+ prop.test(sum(x<=0.05,na.rm=TRUE),sum(!is.na(x)))$conf.int),3) } #$
sw sf ad cvm lillie pearson snow
[1,] 0.780 0.824 0.748 0.717 0.614 0.431 1
[2,] 0.796 0.838 0.765 0.734 0.633 0.450 1
>
>
> ## light tails, uniform
> u <- function(n) runif(n)
>
> out4 <- replicate(10000, simfun1(fun=u, n=65))
> round(apply(out4, 1, function(x) mean(x<=0.05, na.rm=TRUE)),3)
sw sf ad cvm lillie pearson snow
0.906 0.712 0.745 0.591 0.362 0.270 1.000
> round(apply(out4, 1, function(x){
+ prop.test(sum(x<=0.05,na.rm=TRUE),sum(!is.na(x)))$conf.int),3) } #$
sw sf ad cvm lillie pearson snow
[1,] 0.900 0.703 0.737 0.581 0.353 0.261 1
[2,] 0.911 0.720 0.754 0.600 0.372 0.279 1
>
> ## double exponential, Laplace
> de <- function(n) sample(c(-1,1), n, replace=TRUE) * rexp(n)
>
> out5 <- replicate(10000, simfun1(fun=de, n=100))
> round(apply(out5, 1, function(x) mean(x<=0.05, na.rm=TRUE)),3)
sw sf ad cvm lillie pearson snow
0.796 0.844 0.824 0.820 0.706 0.477 1.000
> round(apply(out5, 1, function(x){
+ prop.test(sum(x<=0.05,na.rm=TRUE),sum(!is.na(x)))$conf.int),3) } #$
sw sf ad cvm lillie pearson snow
[1,] 0.788 0.837 0.817 0.813 0.697 0.467 1
[2,] 0.804 0.851 0.832 0.828 0.715 0.486 1
>
> ## skewed, gamma(2,2)
> g22 <- function(n) rgamma(n,2,2)
>
> out6 <- replicate(10000, simfun1(fun=g22, n=50))
Warning message:
In cvm.test(x) :
p-value is smaller than 7.37e-10, cannot be computed more accurately
> round(apply(out6, 1, function(x) mean(x<=0.05, na.rm=TRUE)),3)
sw sf ad cvm lillie pearson snow
0.954 0.930 0.893 0.835 0.695 0.656 1.000
> round(apply(out6, 1, function(x){
+ prop.test(sum(x<=0.05,na.rm=TRUE),sum(!is.na(x)))$conf.int),3) } #$
sw sf ad cvm lillie pearson snow
[1,] 0.950 0.925 0.886 0.827 0.686 0.646 1
[2,] 0.958 0.935 0.899 0.842 0.704 0.665 1
>
> ## skewed, gamma(2,2)
> g99 <- function(n) rgamma(n,9,9)
>
> out7 <- replicate(10000, simfun1(fun=g99, n=150))
> round(apply(out7, 1, function(x) mean(x<=0.05, na.rm=TRUE)),3)
sw sf ad cvm lillie pearson snow
0.844 0.818 0.724 0.651 0.526 0.286 1.000
> round(apply(out7, 1, function(x){
+ prop.test(sum(x<=0.05,na.rm=TRUE),sum(!is.na(x)))$conf.int),3) } #$
sw sf ad cvm lillie pearson snow
[1,] 0.836 0.810 0.715 0.642 0.516 0.277 1
[2,] 0.851 0.826 0.732 0.660 0.536 0.294 1
>
> ## tails normal, middle not
> mid <- function(n) {
+ x <- rnorm(n)
+ x[ x > -0.5 & x < 0.5 ] <- 0
+ x
+ }
>
> out9 <- replicate(10000, simfun1(fun=mid, n=30))
Warning messages:
1: In cvm.test(x) :
p-value is smaller than 7.37e-10, cannot be computed more accurately
2: In cvm.test(x) :
p-value is smaller than 7.37e-10, cannot be computed more accurately
> round(apply(out9, 1, function(x) mean(x<=0.05, na.rm=TRUE)),3)
sw sf ad cvm lillie pearson snow
0.374 0.371 0.624 0.739 0.884 0.948 1.000
> round(apply(out9, 1, function(x){
+ prop.test(sum(x<=0.05,na.rm=TRUE),sum(!is.na(x)))$conf.int),3) } #$
sw sf ad cvm lillie pearson snow
[1,] 0.365 0.362 0.614 0.730 0.878 0.943 1
[2,] 0.384 0.381 0.633 0.747 0.890 0.952 1
>
> ## mixture on variance
> mv <- function(n, p=0.1, sd=3) {
+ rnorm(n,0, ifelse(runif(n)<p, sd, 1))
+ }
>
> out10 <- replicate(10000, simfun1(fun=mv, n=100))
Warning message:
In cvm.test(x) :
p-value is smaller than 7.37e-10, cannot be computed more accurately
> round(apply(out10, 1, function(x) mean(x<=0.05, na.rm=TRUE)),3)
sw sf ad cvm lillie pearson snow
0.800 0.844 0.682 0.609 0.487 0.287 1.000
> round(apply(out10, 1, function(x){
+ prop.test(sum(x<=0.05,na.rm=TRUE),sum(!is.na(x)))$conf.int),3) } #$
sw sf ad cvm lillie pearson snow
[1,] 0.792 0.837 0.673 0.599 0.477 0.278 1
[2,] 0.808 0.851 0.691 0.619 0.497 0.296 1
>
> ## mixture on mean
> mm <- function(n, p=0.3, mu=2) {
+ rnorm(n, ifelse(runif(n)<p, mu, 0), 1)
+ }
>
> out11 <- replicate(10000, simfun1(fun=mm, n=400))
> round(apply(out11, 1, function(x) mean(x<=0.05, na.rm=TRUE)),3)
sw sf ad cvm lillie pearson snow
0.776 0.710 0.808 0.788 0.669 0.354 1.000
> round(apply(out11, 1, function(x){
+ prop.test(sum(x<=0.05,na.rm=TRUE),sum(!is.na(x)))$conf.int),3) } #$
sw sf ad cvm lillie pearson snow
[1,] 0.768 0.701 0.801 0.780 0.659 0.344 1
[2,] 0.784 0.719 0.816 0.796 0.678 0.363 1