Mari adalah graf terhubung dengan node dan tepi . Biarkan menunjukkan (bilangan bulat) dari grafik , dengan total bobot dalam grafik. Berat rata-rata per node adalah . Biarkan menunjukkan penyimpangan dari simpul dari mean. Kami memanggilyang ketidakseimbangan node .
Misalkan bobot antara dua node yang berdekatan dapat berbeda paling banyak , yaitu,
Pertanyaan : Apa ketidakseimbangan terbesar yang mungkin dimiliki jaringan, dalam hal dan ? Untuk lebih tepatnya, gambarkan vektor . Saya akan puas dengan hasil yang terkait dengan atau .
Untuk , batas sederhana dalam hal diameter grafik dapat ditemukan: Karena semua harus dijumlahkan ke nol, jika ada positif besar , harus ada suatu tempat negatif . Maka perbedaan merekasetidaknya, tetapi perbedaan ini paling banyak adalah jarak terpendek antara node dan , yang pada gilirannya dapat paling banyak diameter grafik.
Saya tertarik pada batas yang lebih kuat, lebih disukai untuk nomor - atau . Saya kira itu harus melibatkan beberapa teori grafik spektral untuk mencerminkan konektivitas grafik. Saya mencoba mengungkapkannya sebagai masalah max-flow, tetapi tidak berhasil.
EDIT: Penjelasan lebih lanjut. Saya tertarik pada - atau -norm karena mereka lebih akurat mencerminkan ketidakseimbangan total. Relasi sepele akan diperoleh dari , dan . Saya berharap, bagaimanapun, bahwa karena keterhubungan grafik dan kendala saya dalam perbedaan beban antara node yang berdekatan, bahwa - dan -norm harus jauh lebih kecil.2 | | → e | | 1 ≤ n | | | → e | | ∞ | | → e | | 2 ≤ √12
Contoh: Hypercube Dimensi d, dengan . Ini memiliki diameter . Ketidakseimbangan maksimum paling banyak . Saran ini sebagai batas atas untuk -norm . Sejauh ini, saya tidak dapat membangun situasi di mana ini sebenarnya diperoleh, yang terbaik yang bisa saya lakukan adalah sesuatu di sepanjang garis , di mana saya menanamkan siklus ke dalam Hypercube dan memiliki node memiliki ketidakseimbangan , , , dll. Jadi, di sini terikat dimatikan oleh faktor d = log 2 ( n ) d 1 n d = n log 2 ( n ) | | → e | | 1 = n / 2 0 1 0 - 1 log ( n ), yang saya anggap sudah terlalu banyak, karena saya sedang mencari (ketat) batas ketat.