Saya mencoba memahami kesalahan "clustering" standar dan bagaimana mengeksekusi di R (itu sepele di Stata). Di RI telah gagal menggunakan salah satu plm
atau menulis fungsi saya sendiri. Saya akan menggunakan diamonds
data dari ggplot2
paket.
Saya bisa melakukan efek tetap dengan salah satu variabel dummy
> library(plyr)
> library(ggplot2)
> library(lmtest)
> library(sandwich)
> # with dummies to create fixed effects
> fe.lsdv <- lm(price ~ carat + factor(cut) + 0, data = diamonds)
> ct.lsdv <- coeftest(fe.lsdv, vcov. = vcovHC)
> ct.lsdv
t test of coefficients:
Estimate Std. Error t value Pr(>|t|)
carat 7871.082 24.892 316.207 < 2.2e-16 ***
factor(cut)Fair -3875.470 51.190 -75.707 < 2.2e-16 ***
factor(cut)Good -2755.138 26.570 -103.692 < 2.2e-16 ***
factor(cut)Very Good -2365.334 20.548 -115.111 < 2.2e-16 ***
factor(cut)Premium -2436.393 21.172 -115.075 < 2.2e-16 ***
factor(cut)Ideal -2074.546 16.092 -128.920 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
atau dengan mengartikan kedua sisi kiri dan kanan (tidak ada waktu yang regresi di sini) dan memperbaiki derajat kebebasan.
> # by demeaning with degrees of freedom correction
> diamonds <- ddply(diamonds, .(cut), transform, price.dm = price - mean(price), carat.dm = carat .... [TRUNCATED]
> fe.dm <- lm(price.dm ~ carat.dm + 0, data = diamonds)
> ct.dm <- coeftest(fe.dm, vcov. = vcovHC, df = nrow(diamonds) - 1 - 5)
> ct.dm
t test of coefficients:
Estimate Std. Error t value Pr(>|t|)
carat.dm 7871.082 24.888 316.26 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Saya tidak dapat mereplikasi hasil ini dengan plm
, karena saya tidak memiliki indeks "waktu" (yaitu, ini bukan benar-benar panel, hanya cluster yang bisa memiliki bias umum dalam hal kesalahan mereka).
> plm.temp <- plm(price ~ carat, data = diamonds, index = "cut")
duplicate couples (time-id)
Error in pdim.default(index[[1]], index[[2]]) :
Saya juga mencoba untuk kode matriks kovarians saya sendiri dengan kesalahan standar berkerumun menggunakan penjelasan Stata tentang cluster
opsi mereka ( dijelaskan di sini ), yaitu untuk memecahkan mana , si jumlah cluster, adalah residual untuk observasi dan adalah vektor baris prediktor, termasuk konstanta (ini juga muncul sebagai persamaan (7.22) dalam Cross Section dan Panel Data Wooldridgeuj=Σclusterjei∗xinceiith
plm
dapat melakukan cluster pada satu faktor, saya tidak yakin bagaimana melakukan benchmark kode saya.
> # with cluster robust se
> lm.temp <- lm(price ~ carat + factor(cut) + 0, data = diamonds)
>
> # using the model that Stata uses
> stata.clustering <- function(x, clu, res) {
+ x <- as.matrix(x)
+ clu <- as.vector(clu)
+ res <- as.vector(res)
+ fac <- unique(clu)
+ num.fac <- length(fac)
+ num.reg <- ncol(x)
+ u <- matrix(NA, nrow = num.fac, ncol = num.reg)
+ meat <- matrix(NA, nrow = num.reg, ncol = num.reg)
+
+ # outer terms (X'X)^-1
+ outer <- solve(t(x) %*% x)
+
+ # inner term sum_j u_j'u_j where u_j = sum_i e_i * x_i
+ for (i in seq(num.fac)) {
+ index.loop <- clu == fac[i]
+ res.loop <- res[index.loop]
+ x.loop <- x[clu == fac[i], ]
+ u[i, ] <- as.vector(colSums(res.loop * x.loop))
+ }
+ inner <- t(u) %*% u
+
+ #
+ V <- outer %*% inner %*% outer
+ return(V)
+ }
> x.temp <- data.frame(const = 1, diamonds[, "carat"])
> summary(lm.temp)
Call:
lm(formula = price ~ carat + factor(cut) + 0, data = diamonds)
Residuals:
Min 1Q Median 3Q Max
-17540.7 -791.6 -37.6 522.1 12721.4
Coefficients:
Estimate Std. Error t value Pr(>|t|)
carat 7871.08 13.98 563.0 <2e-16 ***
factor(cut)Fair -3875.47 40.41 -95.9 <2e-16 ***
factor(cut)Good -2755.14 24.63 -111.9 <2e-16 ***
factor(cut)Very Good -2365.33 17.78 -133.0 <2e-16 ***
factor(cut)Premium -2436.39 17.92 -136.0 <2e-16 ***
factor(cut)Ideal -2074.55 14.23 -145.8 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1511 on 53934 degrees of freedom
Multiple R-squared: 0.9272, Adjusted R-squared: 0.9272
F-statistic: 1.145e+05 on 6 and 53934 DF, p-value: < 2.2e-16
> stata.clustering(x = x.temp, clu = diamonds$cut, res = lm.temp$residuals)
const diamonds....carat..
const 11352.64 -14227.44
diamonds....carat.. -14227.44 17830.22
Bisakah ini dilakukan di R? Ini adalah teknik yang cukup umum dalam ekonometrik (ada tutorial singkat dalam kuliah ini ), tapi saya tidak bisa mengetahuinya dalam R. Terima kasih!
cluster
opsi ini dijelaskan. Saya yakin akan mungkin untuk mereplikasi di R.
factor
tidak ada hubungannya dengan factanal
tetapi mengacu pada variabel yang dikategorikan. Namun cluster dalam R mengacu pada analisis cluster, k-means hanyalah metode partisi: statmethods.net/advstats/cluster.html . Saya tidak mendapatkan pertanyaan Anda, tapi saya kira cluster tidak ada hubungannya dengan itu.