13 cara yang dibahas dalam artikel Rodgers dan Nicewander (The American Statistician, Februari 1988) adalah
Fungsi Skor dan Cara Mentah,
r=∑(Xi−X¯)(Yi−Y¯)∑(Xi−X¯)2(Yi−Y¯)2−−−−−−−−−−−−−−−−−−√.
Kovarian Standar,
r=sXY/(sXsY)
di mana adalah kovarians sampel dan s X dan s Y adalah standar deviasi sampel.sXYsXsY
Kemiringan Standar Jalur Regresi,
r=bY⋅XsXsY=bX⋅YsYsX,
di mana dan b X ⋅ Y adalah kemiringan garis regresi.bY⋅XbX⋅Y
Mean Geometris dari Dua Lereng Regresi,
r=±bY⋅XbX⋅Y−−−−−−−√.
Akar Kuadrat dari Rasio Dua Varian (Proporsi Variabilitas Disumbang),
r=∑(Yi−Yi^)2∑(Yi−Y¯)2−−−−−−−−−−−−⎷=SSREGSSTOT−−−−−−√=sY^sY.
Produk Lintas Rata-Rata dari Variabel Standar,
r=∑zXzY/N.
A Function of the Angle Between the Two Standardized Regression Lines. The two regression lines (of Y vs. X and X vs. Y) are symmetric about the diagonal. Let the angle between the two lines be β. Then
r=sec(β)±tan(β).
A Function of the Angle Between the Two Variable Vectors,
r=cos(α).
A Rescaled Variance of the Difference Between Standardized Scores. Letting zY−zX be the difference between standardized X and Y variables for each observation,
r=1−s2(zY−zX)/2=s2(zY+zX)/2−1.
Estimated from the "Balloon" Rule,
r≈1−(h/H)2−−−−−−−−−√
where H is the vertical range of the entire X−Y scatterplot and h is the range through the "center of the distribution on the X axis" (that is, through the point of means).
In Relation to the Bivariate Ellipses of Isoconcentration,
r=D2−d2D2+d2
where D and d are the major and minor axis lengths, respectively. r also equals the slope of the tangent line of an isocontour (in standardized coordinates) at the point the contour crosses the vertical axis.
A Function of Test Statistics from Designed Experiments,
r=tt2+n−2−−−−−−−−√
where t is the test statistic in a two-independent sample t test for a designed experiment with two treatment conditions (coded as X=0,1) and n is the combined total number of observations in the two treatment groups.
The Ratio of Two Means. Assume bivariate normality and standardize the variables. Select some arbitrarily large value Xc of X. Then
r=E(Y|X>Xc)E(X|X>Xc).