Pertanyaan yang diberi tag «jacobian»

2
Misalkan
Apa cara termudah untuk melihat bahwa pernyataan berikut ini benar? Misalkan Y1,…,Yn∼iidExp(1)Y1,…,Yn∼iidExp(1)Y_1, \dots, Y_n \overset{\text{iid}}{\sim} \text{Exp}(1) . Perlihatkan ∑ni=1(Yi−Y(1))∼Gamma(n−1,1)∑i=1n(Yi−Y(1))∼Gamma(n−1,1)\sum_{i=1}^{n}(Y_i - Y_{(1)}) \sim \text{Gamma}(n-1, 1) . Y(1)=min1≤i≤nYiY(1)=min1≤i≤nYiY_{(1)} = \min\limits_{1 \leq i \leq n}Y_i Dengan , ini berarti bahwa .X∼Exp(β)X∼Exp(β)X \sim \text{Exp}(\beta)fX(x)=1βe−x/β⋅1{x>0}fX(x)=1βe−x/β⋅1{x>0}f_{X}(x) = \dfrac{1}{\beta}e^{-x/\beta} \cdot \mathbf{1}_{\{x > 0\}} Mudah untuk melihat . …

1
Penurunan perubahan variabel dari fungsi kepadatan probabilitas?
Dalam pengenalan pola buku dan pembelajaran mesin (rumus 1.27), itu memberi di manax=g(y),px(x)adalah pdf yang sesuai denganpy(y)py(y)=px(x)∣∣∣dxdy∣∣∣=px(g(y))|g′(y)|py(y)=px(x)|dxdy|=px(g(y))|g′(y)|p_y(y)=p_x(x) \left | \frac{d x}{d y} \right |=p_x(g(y)) | g'(y) |x=g(y)x=g(y)x=g(y)px(x)px(x)p_x(x)py(y)py(y)p_y(y) sehubungan dengan perubahan variabel. Buku-buku mengatakan itu karena pengamatan jatuh dalam kisaran akan, untuk nilai-nilai kecil δ x , ditransformasikan menjadi kisaran ( …

1
Jika adalah beta independen maka tunjukkan juga beta
Ini adalah masalah yang muncul dalam ujian semester di universitas kami beberapa tahun yang lalu yang saya perjuangkan untuk diselesaikan. Jika adalah independen acak dengan kepadatan dan masing-masing kemudian menunjukkan bahwa mengikuti .X1,X2X1,X2X_1,X_2ββ\betaβ(n1,n2)β(n1,n2)\beta(n_1,n_2)β(n1+12,n2)β(n1+12,n2)\beta(n_1+\dfrac{1}{2},n_2)X1X2−−−−−√X1X2\sqrt{X_1X_2}β(2n1,2n2)β(2n1,2n2)\beta(2n_1,2n_2) Saya menggunakan metode Jacobian untuk mendapatkan bahwa kepadatan adalah sebagai berikut: Y=X1X2−−−−−√Y=X1X2Y=\sqrt{X_1X_2}fY(y)=4y2n1B(n1,n2)B(n1+12,n2)∫1y1x2(1−x2)n2−1(1−y2x2)n2−1dxfY(y)=4y2n1B(n1,n2)B(n1+12,n2)∫y11x2(1−x2)n2−1(1−y2x2)n2−1dxf_Y(y)=\dfrac{4y^{2n_1}}{B(n_1,n_2)B(n_1+\dfrac{1}{2},n_2)}\int_y^1\dfrac{1}{x^2}(1-x^2)^{n_2-1}(1-\dfrac{y^2}{x^2})^{n_2-1}dx Sebenarnya saya tersesat pada titik …
Dengan menggunakan situs kami, Anda mengakui telah membaca dan memahami Kebijakan Cookie dan Kebijakan Privasi kami.
Licensed under cc by-sa 3.0 with attribution required.