Pertanyaan yang diberi tag «xgboost»

Untuk pertanyaan terkait dengan algoritma eXtreme Gradient Boosting.

3
Perlu bantuan untuk memahami proposal poin split perkiraan xgboost
Latar Belakang: di xgboost yang iterasi mencoba untuk menyesuaikan pohon atas segala contoh yang meminimalkan tujuan berikut:f t ntttftftf_tnnn ∑i=1n[gift(xi)+12hif2t(xi)]∑i=1n[gift(xi)+12hift2(xi)]\sum_{i=1}^n[g_if_t(x_i) + \frac{1}{2}h_if_t^2(x_i)] di mana adalah urutan pertama dan kedua, di atas estimasi terbaik kami sebelumnya (dari iterasi ):y t - 1gi,higi,hig_i, h_iy^y^\hat{y}t−1t−1t-1 gi=dy^l(yi,y^)gi=dy^l(yi,y^)g_i=d_{\hat{y}}l(y_i, \hat{y}) hi=d2y^l(yi,y^)hi=dy^2l(yi,y^)h_i=d^2_{\hat{y}}l(y_i, \hat{y}) dan adalah fungsi kerugian …
12 xgboost  gbm 

1
Berapa banyak sel LSTM yang harus saya gunakan?
Apakah ada aturan praktis (atau aturan aktual) yang berkaitan dengan jumlah sel LSTM minimum, maksimum, dan "wajar" yang harus saya gunakan? Secara khusus saya berhubungan dengan BasicLSTMCell dari TensorFlow dan num_unitsproperti. Harap asumsikan bahwa saya memiliki masalah klasifikasi yang ditentukan oleh: t - number of time steps n - length …
12 rnn  machine-learning  r  predictive-modeling  random-forest  python  language-model  sentiment-analysis  encoding  machine-learning  deep-learning  neural-network  dataset  caffe  classification  xgboost  multiclass-classification  unbalanced-classes  time-series  descriptive-statistics  python  r  clustering  machine-learning  python  deep-learning  tensorflow  machine-learning  python  predictive-modeling  probability  scikit-learn  svm  machine-learning  python  classification  gradient-descent  regression  research  python  neural-network  deep-learning  convnet  keras  python  tensorflow  machine-learning  deep-learning  tensorflow  python  r  bigdata  visualization  rstudio  pandas  pyspark  dataset  time-series  multilabel-classification  machine-learning  neural-network  ensemble-modeling  kaggle  machine-learning  linear-regression  cnn  convnet  machine-learning  tensorflow  association-rules  machine-learning  predictive-modeling  training  model-selection  neural-network  keras  deep-learning  deep-learning  convnet  image-classification  predictive-modeling  prediction  machine-learning  python  classification  predictive-modeling  scikit-learn  machine-learning  python  random-forest  sampling  training  recommender-system  books  python  neural-network  nlp  deep-learning  tensorflow  python  matlab  information-retrieval  search  search-engine  deep-learning  convnet  keras  machine-learning  python  cross-validation  sampling  machine-learning 

3
Apakah ada model bahasa out-of-the-box yang bagus untuk python?
Saya membuat prototipe aplikasi dan saya membutuhkan model bahasa untuk menghitung kebingungan pada beberapa kalimat yang dihasilkan. Apakah ada model bahasa terlatih dalam python yang bisa saya gunakan? Sesuatu yang sederhana seperti model = LanguageModel('en') p1 = model.perplexity('This is a well constructed sentence') p2 = model.perplexity('Bunny lamp robert junior pancake') …
11 python  nlp  language-model  r  statistics  linear-regression  machine-learning  classification  random-forest  xgboost  python  sampling  data-mining  orange  predictive-modeling  recommender-system  statistics  dimensionality-reduction  pca  machine-learning  python  deep-learning  keras  reinforcement-learning  neural-network  image-classification  r  dplyr  deep-learning  keras  tensorflow  lstm  dropout  machine-learning  sampling  categorical-data  data-imputation  machine-learning  deep-learning  machine-learning-model  dropout  deep-network  pandas  data-cleaning  data-science-model  aggregation  python  neural-network  reinforcement-learning  policy-gradients  r  dataframe  dataset  statistics  prediction  forecasting  r  k-means  python  scikit-learn  labels  python  orange  cloud-computing  machine-learning  neural-network  deep-learning  rnn  recurrent-neural-net  logistic-regression  missing-data  deep-learning  autoencoder  apache-hadoop  time-series  data  preprocessing  classification  predictive-modeling  time-series  machine-learning  python  feature-selection  autoencoder  deep-learning  keras  tensorflow  lstm  word-embeddings  predictive-modeling  prediction  machine-learning-model  machine-learning  classification  binary  theory  machine-learning  neural-network  time-series  lstm  rnn  neural-network  deep-learning  keras  tensorflow  convnet  computer-vision 

1
Apa perbedaan dalam xgboost biner: logistik dan reg: logistik
Apa perbedaan R dalam xgboost antara biner: logistik dan reg: logistik? Apakah hanya dalam metrik evaluasi? Jika ya, bagaimana RMSE pada klasifikasi biner dibandingkan dengan tingkat kesalahan? Apakah hubungan antara metrik kurang lebih monotonik, keluaran dari penyetelan pada satu metrik seharusnya tidak berbeda secara signifikan antara kedua pendekatan tersebut?

3
XGboost - Pilihan dibuat oleh model
Saya menggunakan XGboost untuk memprediksi variabel target 2 kelas pada klaim asuransi. Saya memiliki model (pelatihan dengan validasi silang, penyetelan parameter hiper, dll ...) saya jalankan di dataset lain. Pertanyaanku adalah : adakah cara untuk mengetahui mengapa klaim yang diberikan telah dipengaruhi ke satu kelas yaitu fitur yang menjelaskan pilihan …
10 xgboost 

1
Gradient Boosting Tree: "semakin banyak variabel semakin baik"?
Dari tutorial XGBoost, saya pikir ketika setiap pohon tumbuh, semua variabel dipindai untuk dipilih untuk membagi node, dan yang dengan pembagian gain maksimum akan dipilih. Jadi pertanyaan saya adalah bagaimana jika saya menambahkan beberapa variabel derau ke dalam kumpulan data, akankah variabel derau ini mempengaruhi pemilihan variabel (untuk setiap pohon …

1
Output Regresi Linier XGBo salah
Saya seorang pemula untuk XGBoost, jadi maafkan ketidaktahuan saya. Berikut adalah kode python: import pandas as pd import xgboost as xgb df = pd.DataFrame({'x':[1,2,3], 'y':[10,20,30]}) X_train = df.drop('y',axis=1) Y_train = df['y'] T_train_xgb = xgb.DMatrix(X_train, Y_train) params = {"objective": "reg:linear"} gbm = xgb.train(dtrain=T_train_xgb,params=params) Y_pred = gbm.predict(xgb.DMatrix(pd.DataFrame({'x':[4,5]}))) print Y_pred Output adalah: [ …

2
Kapan harus memilih regresi linier atau Pohon Keputusan atau regresi Hutan Acak? [Tutup]
Ditutup . Pertanyaan ini perlu lebih fokus . Saat ini tidak menerima jawaban. Ingin meningkatkan pertanyaan ini? Perbarui pertanyaan sehingga berfokus pada satu masalah hanya dengan mengedit posting ini . Ditutup 4 tahun yang lalu . Saya sedang mengerjakan suatu proyek dan saya mengalami kesulitan dalam menentukan algoritma mana yang …
10 machine-learning  algorithms  random-forest  linear-regression  decision-trees  machine-learning  predictive-modeling  forecast  r  clustering  similarity  data-mining  dataset  statistics  text-mining  text-mining  data-cleaning  data-wrangling  machine-learning  classification  algorithms  xgboost  data-mining  dataset  dataset  regression  graphs  svm  unbalanced-classes  cross-validation  optimization  hyperparameter  genetic-algorithms  visualization  predictive-modeling  correlation  machine-learning  predictive-modeling  apache-spark  statistics  normalization  apache-spark  map-reduce  r  correlation  confusion-matrix  r  data-cleaning  classification  terminology  dataset  image-classification  machine-learning  regression  apache-spark  machine-learning  data-mining  nlp  parsing  machine-learning  dimensionality-reduction  visualization  clustering  multiclass-classification  evaluation  unsupervised-learning  machine-learning  machine-learning  data-mining  supervised-learning  unsupervised-learning  machine-learning  data-mining  classification  statistics  predictive-modeling  data-mining  clustering  python  pandas  machine-learning  dataset  data-cleaning  data  bigdata  software-recommendation 


4
Apakah rekayasa fitur masih bermanfaat saat menggunakan XGBoost?
Saya sedang membaca materi yang terkait dengan XGBoost. Tampaknya metode ini tidak memerlukan penskalaan variabel karena didasarkan pada pohon dan yang satu ini dapat menangkap pola non-linearitas kompleks, interaksi. Dan itu dapat menangani variabel numerik dan kategoris dan juga tampaknya bahwa variabel redundan tidak terlalu mempengaruhi metode ini. Biasanya, dalam …


1
XGBoost untuk klasifikasi biner: memilih ambang batas yang tepat
Saya sedang mengerjakan dataset berlabel biner yang sangat tidak seimbang, di mana jumlah label yang benar hanya 7% dari keseluruhan dataset. Tetapi beberapa kombinasi fitur dapat menghasilkan jumlah yang lebih tinggi dari yang di himpunan bagian. Misalnya kita memiliki dataset berikut dengan satu fitur (warna): 180 sampel merah - 0 …
Dengan menggunakan situs kami, Anda mengakui telah membaca dan memahami Kebijakan Cookie dan Kebijakan Privasi kami.
Licensed under cc by-sa 3.0 with attribution required.