Pertanyaan yang diberi tag «residual-networks»

5
Cara menangani data hierarkis / bersarang dalam pembelajaran mesin
Saya akan menjelaskan masalah saya dengan sebuah contoh. Misalkan Anda ingin memprediksi penghasilan seseorang yang diberikan beberapa atribut: {Usia, Jenis Kelamin, Negara, Wilayah, Kota}. Anda memiliki dataset pelatihan seperti itu train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, 37,41,31,50), Gender=factor(c("M","F","M","F", "M","F","M","F", "F","F","F","M")), Income=c(31,42,71,65, 50,51,101,38, 47,50,55,23)) …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 

1
Apa sebenarnya blok Pembelajaran Residual dalam konteks Deep Residual Networks in Deep Learning?
Saya membaca makalah Deep Residual Learning untuk Pengenalan Gambar dan saya mengalami kesulitan memahami dengan kepastian 100% apa yang diperlukan oleh blok residual secara komputasi. Membaca makalah mereka, mereka memiliki angka 2: yang menggambarkan apa yang seharusnya menjadi Blok Residual. Apakah perhitungan blok residu sama dengan: y=σ(W2σ(W1x+b1)+b2+x)y=σ(W2σ(W1x+b1)+b2+x) \mathbf{y} = \sigma( …

2
Apakah Jaringan Sisa terkait dengan Peningkatan Gradien?
Baru-baru ini, kami melihat kemunculan Residual Neural Net, di mana, setiap lapisan terdiri dari modul komputasi dan koneksi pintasan yang mempertahankan input ke lapisan seperti output dari pameran lapisan ke-i: Jaringan memungkinkan untuk mengekstraksi fitur residu dan memungkinkan untuk kedalaman yang lebih dalam sambil lebih kuat terhadap masalah gradien menghilang, …
Dengan menggunakan situs kami, Anda mengakui telah membaca dan memahami Kebijakan Cookie dan Kebijakan Privasi kami.
Licensed under cc by-sa 3.0 with attribution required.