Pertanyaan yang diberi tag «neural-networks»

Jaringan saraf tiruan (JST) adalah kelas model komputasi yang luas yang didasarkan pada jaringan saraf biologis. Mereka mencakup NNs feedforward (termasuk NN "dalam"), NN konvolusional, NN berulang, dll.

1
Entri Silang atau Kemungkinan Log di lapisan Output
Saya membaca halaman ini: http://neuralnetworksanddeeplearning.com/chap3.html dan dikatakan bahwa lapisan keluaran sigmoid dengan cross-entropy cukup mirip dengan lapisan keluaran softmax dengan kemungkinan log. apa yang terjadi jika saya menggunakan sigmoid dengan log-likelihood atau softmax dengan cross entropy pada layer output? itu baik? karena saya melihat hanya ada sedikit perbedaan dalam persamaan …


2
Jaringan saraf convolusional: Bukankah neuron sentral terlalu terwakili dalam output?
[Pertanyaan ini juga diajukan pada stack overflow] Pertanyaan singkatnya Saya sedang mempelajari jaringan saraf convolutional, dan saya percaya bahwa jaringan ini tidak memperlakukan setiap input neuron (pixel / parameter) secara setara. Bayangkan kita memiliki jaringan yang dalam (banyak lapisan) yang menerapkan konvolusi pada beberapa gambar input. Neuron di "tengah" gambar …





5
Cara menangani data hierarkis / bersarang dalam pembelajaran mesin
Saya akan menjelaskan masalah saya dengan sebuah contoh. Misalkan Anda ingin memprediksi penghasilan seseorang yang diberikan beberapa atribut: {Usia, Jenis Kelamin, Negara, Wilayah, Kota}. Anda memiliki dataset pelatihan seperti itu train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, 37,41,31,50), Gender=factor(c("M","F","M","F", "M","F","M","F", "F","F","F","M")), Income=c(31,42,71,65, 50,51,101,38, 47,50,55,23)) …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 

3
R: Random Forest melemparkan NaN / Inf dalam kesalahan "panggilan fungsi asing" meskipun tidak ada dataset NaN [ditutup]
Tutup. Pertanyaan ini di luar topik . Saat ini tidak menerima jawaban. Ingin meningkatkan pertanyaan ini? Perbarui pertanyaan sehingga sesuai topik untuk Cross Validated. Ditutup 2 tahun yang lalu . Saya menggunakan tanda sisipan untuk menjalankan hutan acak lintas divalidasi atas dataset. Variabel Y adalah faktor. Tidak ada NaN, Inf, …

4
Bagaimana mungkin kerugian validasi meningkat sementara akurasi validasi meningkat juga
Saya melatih jaringan saraf sederhana pada dataset CIFAR10. Setelah beberapa waktu, kehilangan validasi mulai meningkat, sedangkan akurasi validasi juga meningkat. Kehilangan pengujian dan akurasi pengujian terus meningkat. Bagaimana ini mungkin? Tampaknya jika kehilangan validasi meningkat, keakuratan akan menurun. PS Ada beberapa pertanyaan serupa, tetapi tidak ada yang menjelaskan apa yang …

3
Tidak bisakah model pembelajaran yang dalam sekarang bisa ditafsirkan? Apakah fitur simpul?
Untuk model statistik dan pembelajaran mesin, ada beberapa tingkat interpretabilitas: 1) algoritma secara keseluruhan, 2) bagian dari algoritma secara umum 3) bagian dari algoritma pada input tertentu, dan tiga level ini dibagi menjadi dua bagian masing-masing, satu untuk pelatihan dan satu untuk evaluasi fungsi. Dua bagian terakhir jauh lebih dekat …

2
Fungsi kehilangan-koefisien dadu vs lintas-entropi
Saat melatih jaringan saraf segmentasi piksel, seperti jaringan konvolusional penuh, bagaimana Anda membuat keputusan untuk menggunakan fungsi kehilangan lintas-entropi versus fungsi kerugian koefisien-dadu? Saya menyadari ini adalah pertanyaan singkat, tetapi tidak yakin informasi apa yang diberikan. Saya melihat sekumpulan dokumentasi tentang dua fungsi yang hilang tetapi tidak bisa memahami secara …

5
Dapatkah jaringan syaraf yang dalam memperkirakan fungsi perkalian tanpa normalisasi?
Katakanlah kita ingin melakukan regresi untuk f = x * ymenggunakan jaringan saraf standar yang sederhana . Saya ingat bahwa ada beberapa penelitian yang mengatakan bahwa NN dengan satu layer tersembunyi dapat menggunakan fungsi apa pun, tetapi saya telah mencoba dan tanpa normalisasi, NN tidak dapat memperkirakan bahkan perkalian sederhana …



Dengan menggunakan situs kami, Anda mengakui telah membaca dan memahami Kebijakan Cookie dan Kebijakan Privasi kami.
Licensed under cc by-sa 3.0 with attribution required.