Motivasi dari algoritma Maksimalisasi Ekspektasi
Pertanyaan ini dimigrasikan dari Mathematics Stack Exchange karena dapat dijawab di Cross Validated. Bermigrasi 6 tahun yang lalu . Dalam pendekatan algoritma EM kami menggunakan ketidaksetaraan Jensen untuk sampai padalogp(x|θ)≥∫logp(z,x|θ)p(z|x,θ(k))dz−∫logp(z|x,θ)p(z|x,θ(k))dzlogp(x|θ)≥∫logp(z,x|θ)p(z|x,θ(k))dz−∫logp(z|x,θ)p(z|x,θ(k))dz\log p(x|\theta) \geq \int \log p(z,x|\theta) p(z|x,\theta^{(k)}) dz - \int \log p(z|x,\theta) p(z|x,\theta^{(k)})dz dan definisikan olehθ(k+1)θ(k+1)\theta^{(k+1)}θ(k+1)=argmaxθ∫logp(z,x|θ)p(z|x,θ(k))dzθ(k+1)=argmaxθ∫logp(z,x|θ)p(z|x,θ(k))dz\theta^{(k+1)}=\arg \max_{\theta}\int \log p(z,x|\theta) p(z|x,\theta^{(k)}) dz …