Pertanyaan yang diberi tag «weighted-regression»

Regresi kuadrat terkecil berbobot adalah generalisasi regresi OLS yang digunakan ketika titik data berbeda memiliki kepentingan yang berbeda, atau "bobot". Lihat juga [data berbobot].



1
Apa intuisi di balik sampel yang dapat ditukar di bawah hipotesis nol?
Tes permutasi (juga disebut tes pengacakan, uji pengacakan ulang, atau tes yang tepat) sangat berguna dan berguna ketika asumsi distribusi normal yang diperlukan misalnya, t-testtidak terpenuhi dan ketika transformasi nilai dengan peringkat dari tes non-parametrik seperti Mann-Whitney-U-testakan menyebabkan lebih banyak informasi hilang. Namun, satu dan hanya satu asumsi yang tidak …
15 hypothesis-testing  permutation-test  exchangeability  r  statistical-significance  loess  data-visualization  normal-distribution  pdf  ggplot2  kernel-smoothing  probability  self-study  expected-value  normal-distribution  prior  correlation  time-series  regression  heteroscedasticity  estimation  estimators  fisher-information  data-visualization  repeated-measures  binary-data  panel-data  mathematical-statistics  coefficient-of-variation  normal-distribution  order-statistics  regression  machine-learning  one-class  probability  estimators  forecasting  prediction  validation  finance  measurement-error  variance  mean  spatial  monte-carlo  data-visualization  boxplot  sampling  uniform  chi-squared  goodness-of-fit  probability  mixture  theory  gaussian-mixture  regression  statistical-significance  p-value  bootstrap  regression  multicollinearity  correlation  r  poisson-distribution  survival  regression  categorical-data  ordinal-data  ordered-logit  regression  interaction  time-series  machine-learning  forecasting  cross-validation  binomial  multiple-comparisons  simulation  false-discovery-rate  r  clustering  frequency  wilcoxon-mann-whitney  wilcoxon-signed-rank  r  svm  t-test  missing-data  excel  r  numerical-integration  r  random-variable  lme4-nlme  mixed-model  weighted-regression  power-law  errors-in-variables  machine-learning  classification  entropy  information-theory  mutual-information 




5
Bagaimana cara melakukan imputasi nilai dalam jumlah poin data yang sangat besar?
Saya memiliki dataset yang sangat besar dan sekitar 5% nilai acak hilang. Variabel-variabel ini berkorelasi satu sama lain. Contoh berikut dataset R hanyalah contoh mainan dengan data berkorelasi dummy. set.seed(123) # matrix of X variable xmat <- matrix(sample(-1:1, 2000000, replace = TRUE), ncol = 10000) colnames(xmat) <- paste ("M", 1:10000, …
12 r  random-forest  missing-data  data-imputation  multiple-imputation  large-data  definition  moving-window  self-study  categorical-data  econometrics  standard-error  regression-coefficients  normal-distribution  pdf  lognormal  regression  python  scikit-learn  interpolation  r  self-study  poisson-distribution  chi-squared  matlab  matrix  r  modeling  multinomial  mlogit  choice  monte-carlo  indicator-function  r  aic  garch  likelihood  r  regression  repeated-measures  simulation  multilevel-analysis  chi-squared  expected-value  multinomial  yates-correction  classification  regression  self-study  repeated-measures  references  residuals  confidence-interval  bootstrap  normality-assumption  resampling  entropy  cauchy  clustering  k-means  r  clustering  categorical-data  continuous-data  r  hypothesis-testing  nonparametric  probability  bayesian  pdf  distributions  exponential  repeated-measures  random-effects-model  non-independent  regression  error  regression-to-the-mean  correlation  group-differences  post-hoc  neural-networks  r  time-series  t-test  p-value  normalization  probability  moments  mgf  time-series  model  seasonality  r  anova  generalized-linear-model  proportion  percentage  nonparametric  ranks  weighted-regression  variogram  classification  neural-networks  fuzzy  variance  dimensionality-reduction  confidence-interval  proportion  z-test  r  self-study  pdf 

2
Teori di balik argumen bobot dalam R saat menggunakan lm ()
Setelah satu tahun di sekolah pascasarjana, pemahaman saya tentang "kuadrat terkecil tertimbang" adalah sebagai berikut: biarkan y∈Rny∈Rn\mathbf{y} \in \mathbb{R}^n , XX\mathbf{X} menjadi beberapa matriks desain n×pn×pn \times p , menjadi parameter vektor, \ boldsymbol \ epsilon \ in \ mathbb {R} ^ n menjadi vektor kesalahan sedemikian rupa sehingga \ …





3
Menggunakan bobot regresi ketika mungkin diukur dengan kesalahan pengukuran bukan-rata-rata
Misalkan kita mengamati data dan ingin mencocokkan model regresi untuk . Sayangnya, kadang-kadang diukur dengan kesalahan yang rata-rata bukan nol.Y,XY,XY, XE[Y|X]E[Y|X]\mathbf{E}[Y \,|\, X]YYY Biarkan menunjukkan apakah diukur dengan kesalahan rata-rata nol klasik atau kesalahan bukan-rata. Kami ingin memperkirakan . Sayangnya, Z umumnya tidak diamati, dan \ mathbf {E} [Y \, …

2
Bagaimana cara membuat koreksi peristiwa langka yang dijelaskan dalam King and Zeng (2001)?
Saya memiliki dataset dengan variabel respons biner (bertahan hidup) dan 3 variabel penjelas ( A= 3 level, B= 3 level, C= 6 level). Dalam dataset ini, data seimbang dengan 100 individu per ABCkategori. Saya sudah mempelajari efek dari A, Bdan Cvariabel dengan dataset ini; efeknya signifikan. Saya memiliki subset. Dalam …

2
Mengapa model statistik cocok jika diberi set data yang sangat besar?
Proyek saya saat ini mungkin mengharuskan saya untuk membuat model untuk memprediksi perilaku sekelompok orang tertentu. set data pelatihan hanya berisi 6 variabel (id hanya untuk tujuan identifikasi): id, age, income, gender, job category, monthly spend di mana monthly spendadalah variabel respon. Tetapi dataset pelatihan berisi sekitar 3 juta baris, …
8 modeling  large-data  overfitting  clustering  algorithms  error  spatial  r  regression  predictive-models  linear-model  average  measurement-error  weighted-mean  error-propagation  python  standard-error  weighted-regression  hypothesis-testing  time-series  machine-learning  self-study  arima  regression  correlation  anova  statistical-significance  excel  r  regression  distributions  statistical-significance  contingency-tables  regression  optimization  measurement-error  loss-functions  image-processing  java  panel-data  probability  conditional-probability  r  lme4-nlme  model-comparison  time-series  probability  probability  conditional-probability  logistic  multiple-regression  model-selection  r  regression  model-based-clustering  svm  feature-selection  feature-construction  time-series  forecasting  stationarity  r  distributions  bootstrap  r  distributions  estimation  maximum-likelihood  garch  references  probability  conditional-probability  regression  logistic  regression-coefficients  model-comparison  confidence-interval  r  regression  r  generalized-linear-model  outliers  robust  regression  classification  categorical-data  r  association-rules  machine-learning  distributions  posterior  likelihood  r  hypothesis-testing  normality-assumption  missing-data  convergence  expectation-maximization  regression  self-study  categorical-data  regression  simulation  regression  self-study  self-study  gamma-distribution  modeling  microarray  synthetic-data 

Dengan menggunakan situs kami, Anda mengakui telah membaca dan memahami Kebijakan Cookie dan Kebijakan Privasi kami.
Licensed under cc by-sa 3.0 with attribution required.