Pertanyaan yang diberi tag «svm»

Support Vector Machine mengacu pada "seperangkat metode pembelajaran terawasi terkait yang menganalisis data dan mengenali pola, yang digunakan untuk klasifikasi dan analisis regresi."

2
Metode kernel mana yang memberikan output probabilitas terbaik?
Baru-baru ini saya telah menggunakan penskalaan Platt untuk keluaran-SVM untuk memperkirakan probabilitas peristiwa-standar. Alternatif yang lebih langsung sepertinya adalah "Kernel logistic Regression" (KLR) dan "Import Vector Machine" terkait. Adakah yang bisa mengatakan metode kernel mana yang memberikan probabilitas-keluaran saat ini canggih? Apakah ada R-implementasi KLR? Terima kasih banyak atas bantuan …

1
Bagaimana SVMs = Pencocokan Templat?
Saya membaca tentang SVM dan mengetahui bahwa mereka menyelesaikan masalah optimisasi dan ide margin maksimum sangat masuk akal. Sekarang, menggunakan kernel mereka bahkan dapat menemukan batas pemisahan non-linear yang hebat. Sejauh ini, saya benar-benar tidak tahu bagaimana SVM (mesin kernel khusus) dan mesin kernel terkait dengan jaringan saraf? Pertimbangkan komentar …

1
Apakah ada aplikasi di mana SVM masih unggul?
Algoritma SVM cukup tua - dikembangkan tahun 1960-an, tetapi sangat populer pada 1990-an dan 2000-an. Ini adalah bagian klasik (dan sangat indah) dari kursus pembelajaran mesin. Saat ini tampaknya dalam pemrosesan media (gambar, suara, dll.) Jaringan saraf benar-benar mendominasi, sementara di daerah lain Gradient Boosting memiliki posisi yang sangat kuat. …

4
Model Sejarah Acara Diskrit-Waktu (Bertahan Hidup) di R
Saya mencoba menyesuaikan model waktu-diskrit dalam R, tapi saya tidak yakin bagaimana melakukannya. Saya telah membaca bahwa Anda dapat mengatur variabel dependen dalam baris yang berbeda, satu untuk setiap pengamatan waktu, dan menggunakan glmfungsi dengan logit atau tautan cloglog. Dalam hal ini, saya memiliki tiga kolom: ID, Event(1 atau 0, …
10 r  survival  pca  sas  matlab  neural-networks  r  logistic  spatial  spatial-interaction-model  r  time-series  econometrics  var  statistical-significance  t-test  cross-validation  sample-size  r  regression  optimization  least-squares  constrained-regression  nonparametric  ordinal-data  wilcoxon-signed-rank  references  neural-networks  jags  bugs  hierarchical-bayesian  gaussian-mixture  r  regression  svm  predictive-models  libsvm  scikit-learn  probability  self-study  stata  sample-size  spss  wilcoxon-mann-whitney  survey  ordinal-data  likert  group-differences  r  regression  anova  mathematical-statistics  normal-distribution  random-generation  truncation  repeated-measures  variance  variability  distributions  random-generation  uniform  regression  r  generalized-linear-model  goodness-of-fit  data-visualization  r  time-series  arima  autoregressive  confidence-interval  r  time-series  arima  autocorrelation  seasonality  hypothesis-testing  bayesian  frequentist  uninformative-prior  correlation  matlab  cross-correlation 

1
Nilai variabel tersembunyi regresi linear R "bernilai"
Ini hanya contoh yang saya temui beberapa kali, jadi saya tidak punya data sampel. Menjalankan model regresi linier di R: a.lm = lm(Y ~ x1 + x2) x1adalah variabel kontinu. x2bersifat kategorikal dan memiliki tiga nilai, mis. "Rendah", "Sedang" dan "Tinggi". Namun output yang diberikan oleh R akan menjadi seperti: …
10 r  regression  categorical-data  regression-coefficients  categorical-encoding  machine-learning  random-forest  anova  spss  r  self-study  bootstrap  monte-carlo  r  multiple-regression  partitioning  neural-networks  normalization  machine-learning  svm  kernel-trick  self-study  survival  cox-model  repeated-measures  survey  likert  correlation  variance  sampling  meta-analysis  anova  independence  sample  assumptions  bayesian  covariance  r  regression  time-series  mathematical-statistics  graphical-model  machine-learning  linear-model  kernel-trick  linear-algebra  self-study  moments  function  correlation  spss  probability  confidence-interval  sampling  mean  population  r  generalized-linear-model  prediction  offset  data-visualization  clustering  sas  cart  binning  sas  logistic  causality  regression  self-study  standard-error  r  distributions  r  regression  time-series  multiple-regression  python  chi-squared  independence  sample  clustering  data-mining  rapidminer  probability  stochastic-processes  clustering  binary-data  dimensionality-reduction  svd  correspondence-analysis  data-visualization  excel  c#  hypothesis-testing  econometrics  survey  rating  composite  regression  least-squares  mcmc  markov-process  kullback-leibler  convergence  predictive-models  r  regression  anova  confidence-interval  survival  cox-model  hazard  normal-distribution  autoregressive  mixed-model  r  mixed-model  sas  hypothesis-testing  mediation  interaction 

1
Periksa status proses pelatihan dalam R [ditutup]
Tutup. Pertanyaan ini di luar topik . Saat ini tidak menerima jawaban. Ingin meningkatkan pertanyaan ini? Perbarui pertanyaan sehingga sesuai topik untuk Cross Validated. Ditutup 4 tahun yang lalu . Saya melatih model menggunakan caretpaket dalam R selama hampir 3 hari. Perhitungan berjalan secara paralel (beberapa proses). Sayangnya tidak ada …

1
Model pembelajaran dalam mana yang dapat mengklasifikasikan kategori yang tidak eksklusif satu sama lain
Contoh: Saya memiliki kalimat dalam deskripsi pekerjaan: "Java senior engineer in UK". Saya ingin menggunakan model pembelajaran yang mendalam untuk memperkirakannya sebagai 2 kategori: English dan IT jobs. Jika saya menggunakan model klasifikasi tradisional, hanya dapat memprediksi 1 label dengan softmaxfungsi di lapisan terakhir. Dengan demikian, saya dapat menggunakan 2 …
9 machine-learning  deep-learning  natural-language  tensorflow  sampling  distance  non-independent  application  regression  machine-learning  logistic  mixed-model  control-group  crossover  r  multivariate-analysis  ecology  procrustes-analysis  vegan  regression  hypothesis-testing  interpretation  chi-squared  bootstrap  r  bioinformatics  bayesian  exponential  beta-distribution  bernoulli-distribution  conjugate-prior  distributions  bayesian  prior  beta-distribution  covariance  naive-bayes  smoothing  laplace-smoothing  distributions  data-visualization  regression  probit  penalized  estimation  unbiased-estimator  fisher-information  unbalanced-classes  bayesian  model-selection  aic  multiple-regression  cross-validation  regression-coefficients  nonlinear-regression  standardization  naive-bayes  trend  machine-learning  clustering  unsupervised-learning  wilcoxon-mann-whitney  z-score  econometrics  generalized-moments  method-of-moments  machine-learning  conv-neural-network  image-processing  ocr  machine-learning  neural-networks  conv-neural-network  tensorflow  r  logistic  scoring-rules  probability  self-study  pdf  cdf  classification  svm  resampling  forecasting  rms  volatility-forecasting  diebold-mariano  neural-networks  prediction-interval  uncertainty 


1
Perbedaan antara jenis-jenis SVM
Saya baru mendukung mesin vektor. Penjelasan singkat The svmfungsi dari e1071paket di R menawarkan berbagai pilihan: Klasifikasi-C nu-klasifikasi satu-klasifikasi (untuk deteksi kebaruan) regresi eps nu-regresi Apa perbedaan intuitif antara lima jenis? Yang mana yang harus diterapkan dalam situasi apa?


2
Kernel SVM mana yang digunakan untuk masalah klasifikasi biner?
Saya seorang pemula ketika datang untuk mendukung mesin vektor. Apakah ada beberapa pedoman yang mengatakan kernel mana (mis. Linear, polinomial) paling cocok untuk masalah tertentu? Dalam kasus saya, saya harus mengklasifikasikan halaman web menurut apakah mereka mengandung beberapa informasi spesifik atau tidak, yaitu saya memiliki masalah klasifikasi biner. Dapatkah Anda …

2
Regresi SVM dengan data longitudinal
Saya memiliki sekitar 500 variabel per pasien, setiap variabel memiliki satu nilai kontinu dan diukur pada tiga titik waktu yang berbeda (setelah 2 bulan dan setelah 1 tahun). Dengan regresi saya ingin memprediksi hasil pengobatan untuk pasien baru. Apakah mungkin untuk menggunakan regresi SVM dengan data longitudinal seperti itu?


1
Bagaimana cara membandingkan acara yang diamati dengan yang diharapkan?
Misalkan saya punya satu sampel frekuensi dari 4 peristiwa yang mungkin: Event1 - 5 E2 - 1 E3 - 0 E4 - 12 dan saya memiliki probabilitas yang diharapkan dari peristiwa saya terjadi: p1 - 0.2 p2 - 0.1 p3 - 0.1 p4 - 0.6 Dengan jumlah frekuensi yang diamati …
9 r  statistical-significance  chi-squared  multivariate-analysis  exponential  joint-distribution  statistical-significance  self-study  standard-deviation  probability  normal-distribution  spss  interpretation  assumptions  cox-model  reporting  cox-model  statistical-significance  reliability  method-comparison  classification  boosting  ensemble  adaboost  confidence-interval  cross-validation  prediction  prediction-interval  regression  machine-learning  svm  regularization  regression  sampling  survey  probit  matlab  feature-selection  information-theory  mutual-information  time-series  forecasting  simulation  classification  boosting  ensemble  adaboost  normal-distribution  multivariate-analysis  covariance  gini  clustering  text-mining  distance-functions  information-retrieval  similarities  regression  logistic  stata  group-differences  r  anova  confidence-interval  repeated-measures  r  logistic  lme4-nlme  inference  fiducial  kalman-filter  classification  discriminant-analysis  linear-algebra  computing  statistical-significance  time-series  panel-data  missing-data  uncertainty  probability  multivariate-analysis  r  classification  spss  k-means  discriminant-analysis  poisson-distribution  average  r  random-forest  importance  probability  conditional-probability  distributions  standard-deviation  time-series  machine-learning  online  forecasting  r  pca  dataset  data-visualization  bayes  distributions  mathematical-statistics  degrees-of-freedom 

1
Bagaimana cara mendapatkan batas keputusan dari linear SVM di R?
Saya membutuhkan paket yang dapat memberi saya persamaan untuk model SVM linier. Saat ini saya menggunakan e1071 seperti: library(e1071) m = svm(data, labels, type='C', kernel='linear', cost=cost, probability=FALSE, scale=scale) w = t(m$coefs) %*% data[m$index,] #Weight vector b = -model$rho #Offset Namun, saya tidak yakin bagaimana e1071::svm()memilih kelas positif dan negatif, jadi …
9 r  svm  e1071 

Dengan menggunakan situs kami, Anda mengakui telah membaca dan memahami Kebijakan Cookie dan Kebijakan Privasi kami.
Licensed under cc by-sa 3.0 with attribution required.