Pertanyaan yang diberi tag «categorical-data»

Data kategorikal (disebut juga nominal) dapat mengambil sejumlah nilai yang mungkin disebut kategori. Nilai kategori "label", mereka tidak "mengukur". Silakan gunakan tag [data-ordinal] untuk tipe data yang diskrit tapi terurut.

5
Cara menangani data hierarkis / bersarang dalam pembelajaran mesin
Saya akan menjelaskan masalah saya dengan sebuah contoh. Misalkan Anda ingin memprediksi penghasilan seseorang yang diberikan beberapa atribut: {Usia, Jenis Kelamin, Negara, Wilayah, Kota}. Anda memiliki dataset pelatihan seperti itu train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, 37,41,31,50), Gender=factor(c("M","F","M","F", "M","F","M","F", "F","F","F","M")), Income=c(31,42,71,65, 50,51,101,38, 47,50,55,23)) …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 

1
Bisakah derajat kebebasan menjadi angka non-integer?
Ketika saya menggunakan GAM, itu memberi saya sisa DF adalah (baris terakhir dalam kode). Apa artinya? Melampaui contoh GAM, Secara umum, bisakah jumlah derajat kebebasan menjadi angka yang bukan bilangan bulat?26.626.626.6 > library(gam) > summary(gam(mpg~lo(wt),data=mtcars)) Call: gam(formula = mpg ~ lo(wt), data = mtcars) Deviance Residuals: Min 1Q Median 3Q …
27 r  degrees-of-freedom  gam  machine-learning  pca  lasso  probability  self-study  bootstrap  expected-value  regression  machine-learning  linear-model  probability  simulation  random-generation  machine-learning  distributions  svm  libsvm  classification  pca  multivariate-analysis  feature-selection  archaeology  r  regression  dataset  simulation  r  regression  time-series  forecasting  predictive-models  r  mean  sem  lavaan  machine-learning  regularization  regression  conv-neural-network  convolution  classification  deep-learning  conv-neural-network  regression  categorical-data  econometrics  r  confirmatory-factor  scale-invariance  self-study  unbiased-estimator  mse  regression  residuals  sampling  random-variable  sample  probability  random-variable  convergence  r  survival  weibull  references  autocorrelation  hypothesis-testing  distributions  correlation  regression  statistical-significance  regression-coefficients  univariate  categorical-data  chi-squared  regression  machine-learning  multiple-regression  categorical-data  linear-model  pca  factor-analysis  factor-rotation  classification  scikit-learn  logistic  p-value  regression  panel-data  multilevel-analysis  variance  bootstrap  bias  probability  r  distributions  interquartile  time-series  hypothesis-testing  normal-distribution  normality-assumption  kurtosis  arima  panel-data  stata  clustered-standard-errors  machine-learning  optimization  lasso  multivariate-analysis  ancova  machine-learning  cross-validation 

4
Memprediksi dengan fitur berkelanjutan dan kategorikal
Beberapa teknik pemodelan prediktif lebih dirancang untuk menangani prediktor berkelanjutan, sementara yang lain lebih baik untuk menangani variabel kategorikal atau diskrit. Tentu saja ada teknik untuk mengubah satu jenis ke yang lain (diskritisasi, variabel dummy, dll.). Namun, apakah ada teknik pemodelan prediktif yang dirancang untuk menangani kedua jenis input pada …

3
Menafsirkan istilah interaksi dalam regresi logit dengan variabel kategori
Saya memiliki data dari eksperimen survei di mana responden secara acak ditugaskan ke salah satu dari empat kelompok: > summary(df$Group) Control Treatment1 Treatment2 Treatment3 59 63 62 66 Sementara tiga kelompok perlakuan sedikit berbeda dalam stimulus yang diterapkan, perbedaan utama yang saya pedulikan adalah antara kelompok kontrol dan kelompok perlakuan. …


1
Bagaimana cara memvisualisasikan tabel kontingensi jarang yang sangat besar?
Saya memiliki dua variabel: Nama Obat (DN) dan Kejadian Buruk yang sesuai (AE), yang berdiri dalam hubungan banyak-ke-banyak. Ada 33.556 nama obat dan 9.516 efek samping. Ukuran sampel adalah sekitar 5,8 juta pengamatan. Saya ingin belajar dan memahami hubungan / hubungan antara DN dan AE. Saya sedang memikirkan cara memvisualisasikan …




1
Menjatuhkan salah satu kolom saat menggunakan pengkodean satu-panas
Pemahaman saya adalah bahwa dalam pembelajaran mesin itu bisa menjadi masalah jika dataset Anda memiliki fitur yang sangat berkorelasi, karena mereka secara efektif menyandikan informasi yang sama. Baru-baru ini seseorang menunjukkan bahwa ketika Anda melakukan enkode satu-panas pada variabel kategori Anda berakhir dengan fitur yang berkorelasi, jadi Anda harus membuang …


4
Bagaimana cara memproyeksikan vektor baru ke ruang PCA?
Setelah melakukan analisis komponen utama (PCA), saya ingin memproyeksikan vektor baru ke ruang PCA (yaitu menemukan koordinatnya dalam sistem koordinat PCA). Saya telah menghitung PCA dalam bahasa R menggunakan prcomp. Sekarang saya harus bisa mengalikan vektor saya dengan matriks rotasi PCA. Haruskah komponen utama dalam matriks ini disusun dalam baris …
21 r  pca  r  variance  heteroscedasticity  misspecification  distributions  time-series  data-visualization  modeling  histogram  kolmogorov-smirnov  negative-binomial  likelihood-ratio  econometrics  panel-data  categorical-data  scales  survey  distributions  pdf  histogram  correlation  algorithms  r  gpu  parallel-computing  approximation  mean  median  references  sample-size  normality-assumption  central-limit-theorem  rule-of-thumb  confidence-interval  estimation  mixed-model  psychometrics  random-effects-model  hypothesis-testing  sample-size  dataset  large-data  regression  standard-deviation  variance  approximation  hypothesis-testing  variance  central-limit-theorem  kernel-trick  kernel-smoothing  error  sampling  hypothesis-testing  normality-assumption  philosophical  confidence-interval  modeling  model-selection  experiment-design  hypothesis-testing  statistical-significance  power  asymptotics  information-retrieval  anova  multiple-comparisons  ancova  classification  clustering  factor-analysis  psychometrics  r  sampling  expectation-maximization  markov-process  r  data-visualization  correlation  regression  statistical-significance  degrees-of-freedom  experiment-design  r  regression  curve-fitting  change-point  loess  machine-learning  classification  self-study  monte-carlo  markov-process  references  mathematical-statistics  data-visualization  python  cart  boosting  regression  classification  robust  cart  survey  binomial  psychometrics  likert  psychology  asymptotics  multinomial 


4
Apa nilai yang benar untuk presisi dan mengingat dalam kasus tepi?
Presisi didefinisikan sebagai: p = true positives / (true positives + false positives) Apakah benar bahwa, sebagai true positivesdan false positivespendekatan 0, presisi mendekati 1? Pertanyaan yang sama untuk diingat: r = true positives / (true positives + false negatives) Saat ini saya sedang menerapkan tes statistik di mana saya …
20 precision-recall  data-visualization  logarithm  references  r  networks  data-visualization  standard-deviation  probability  binomial  negative-binomial  r  categorical-data  aggregation  plyr  survival  python  regression  r  t-test  bayesian  logistic  data-transformation  confidence-interval  t-test  interpretation  distributions  data-visualization  pca  genetics  r  finance  maximum  probability  standard-deviation  probability  r  information-theory  references  computational-statistics  computing  references  engineering-statistics  t-test  hypothesis-testing  independence  definition  r  censoring  negative-binomial  poisson-distribution  variance  mixed-model  correlation  intraclass-correlation  aggregation  interpretation  effect-size  hypothesis-testing  goodness-of-fit  normality-assumption  small-sample  distributions  regression  normality-assumption  t-test  anova  confidence-interval  z-statistic  finance  hypothesis-testing  mean  model-selection  information-geometry  bayesian  frequentist  terminology  type-i-and-ii-errors  cross-validation  smoothing  splines  data-transformation  normality-assumption  variance-stabilizing  r  spss  stata  python  correlation  logistic  logit  link-function  regression  predictor  pca  factor-analysis  r  bayesian  maximum-likelihood  mcmc  conditional-probability  statistical-significance  chi-squared  proportion  estimation  error  shrinkage  application  steins-phenomenon 


Dengan menggunakan situs kami, Anda mengakui telah membaca dan memahami Kebijakan Cookie dan Kebijakan Privasi kami.
Licensed under cc by-sa 3.0 with attribution required.