Pertanyaan yang diberi tag «covariance»

Kovarian adalah jumlah yang digunakan untuk mengukur kekuatan dan arah hubungan linear antara dua variabel. Kovarians tidak berskala, & karenanya seringkali sulit ditafsirkan; ketika diskalakan oleh variabel SD, itu menjadi koefisien korelasi Pearson.


2
tentang kemerdekaan bersyarat dan representasi grafisnya
Ketika mempelajari pemilihan kovarians, saya pernah membaca contoh berikut. Sehubungan dengan model berikut: Matriks kovariansnya dan matriks kovarians terbalik diberikan sebagai berikut, Saya tidak mengerti mengapa independensi dan diputuskan oleh kovarians terbalik di sini?yxxxyyy Apa logika matematika yang mendasari hubungan ini? Juga, grafik sebelah kiri pada gambar berikut diklaim untuk …

1
Mengapa Anova () dan drop1 () memberikan jawaban berbeda untuk GLMM?
Saya memiliki GLMM formulir: lmer(present? ~ factor1 + factor2 + continuous + factor1*continuous + (1 | factor3), family=binomial) Ketika saya menggunakan drop1(model, test="Chi"), saya mendapatkan hasil yang berbeda daripada jika saya menggunakan Anova(model, type="III")dari paket mobil atau summary(model). Dua yang terakhir ini memberikan jawaban yang sama. Menggunakan banyak data yang …
10 r  anova  glmm  r  mixed-model  bootstrap  sample-size  cross-validation  roc  auc  sampling  stratification  random-allocation  logistic  stata  interpretation  proportion  r  regression  multiple-regression  linear-model  lm  r  cross-validation  cart  rpart  logistic  generalized-linear-model  econometrics  experiment-design  causality  instrumental-variables  random-allocation  predictive-models  data-mining  estimation  contingency-tables  epidemiology  standard-deviation  mean  ancova  psychology  statistical-significance  cross-validation  synthetic-data  poisson-distribution  negative-binomial  bioinformatics  sequence-analysis  distributions  binomial  classification  k-means  distance  unsupervised-learning  euclidean  correlation  chi-squared  spearman-rho  forecasting  excel  exponential-smoothing  binomial  sample-size  r  change-point  wilcoxon-signed-rank  ranks  clustering  matlab  covariance  covariance-matrix  normal-distribution  simulation  random-generation  bivariate  standardization  confounding  z-statistic  forecasting  arima  minitab  poisson-distribution  negative-binomial  poisson-regression  overdispersion  probability  self-study  markov-process  estimation  maximum-likelihood  classification  pca  group-differences  chi-squared  survival  missing-data  contingency-tables  anova  proportion 



1
Apa matriks kovarians asimptotik?
Benarkah matriks kovarians asimptotik sama dengan matriks kovarians estimasi parameter? Jika tidak, apa itu? Dan apa perbedaan antara matriks kovarians dan matriks kovarians asimptotik dalam kasus itu? Terima kasih sebelumnya!

1
Nilai variabel tersembunyi regresi linear R "bernilai"
Ini hanya contoh yang saya temui beberapa kali, jadi saya tidak punya data sampel. Menjalankan model regresi linier di R: a.lm = lm(Y ~ x1 + x2) x1adalah variabel kontinu. x2bersifat kategorikal dan memiliki tiga nilai, mis. "Rendah", "Sedang" dan "Tinggi". Namun output yang diberikan oleh R akan menjadi seperti: …
10 r  regression  categorical-data  regression-coefficients  categorical-encoding  machine-learning  random-forest  anova  spss  r  self-study  bootstrap  monte-carlo  r  multiple-regression  partitioning  neural-networks  normalization  machine-learning  svm  kernel-trick  self-study  survival  cox-model  repeated-measures  survey  likert  correlation  variance  sampling  meta-analysis  anova  independence  sample  assumptions  bayesian  covariance  r  regression  time-series  mathematical-statistics  graphical-model  machine-learning  linear-model  kernel-trick  linear-algebra  self-study  moments  function  correlation  spss  probability  confidence-interval  sampling  mean  population  r  generalized-linear-model  prediction  offset  data-visualization  clustering  sas  cart  binning  sas  logistic  causality  regression  self-study  standard-error  r  distributions  r  regression  time-series  multiple-regression  python  chi-squared  independence  sample  clustering  data-mining  rapidminer  probability  stochastic-processes  clustering  binary-data  dimensionality-reduction  svd  correspondence-analysis  data-visualization  excel  c#  hypothesis-testing  econometrics  survey  rating  composite  regression  least-squares  mcmc  markov-process  kullback-leibler  convergence  predictive-models  r  regression  anova  confidence-interval  survival  cox-model  hazard  normal-distribution  autoregressive  mixed-model  r  mixed-model  sas  hypothesis-testing  mediation  interaction 



1
Model pembelajaran dalam mana yang dapat mengklasifikasikan kategori yang tidak eksklusif satu sama lain
Contoh: Saya memiliki kalimat dalam deskripsi pekerjaan: "Java senior engineer in UK". Saya ingin menggunakan model pembelajaran yang mendalam untuk memperkirakannya sebagai 2 kategori: English dan IT jobs. Jika saya menggunakan model klasifikasi tradisional, hanya dapat memprediksi 1 label dengan softmaxfungsi di lapisan terakhir. Dengan demikian, saya dapat menggunakan 2 …
9 machine-learning  deep-learning  natural-language  tensorflow  sampling  distance  non-independent  application  regression  machine-learning  logistic  mixed-model  control-group  crossover  r  multivariate-analysis  ecology  procrustes-analysis  vegan  regression  hypothesis-testing  interpretation  chi-squared  bootstrap  r  bioinformatics  bayesian  exponential  beta-distribution  bernoulli-distribution  conjugate-prior  distributions  bayesian  prior  beta-distribution  covariance  naive-bayes  smoothing  laplace-smoothing  distributions  data-visualization  regression  probit  penalized  estimation  unbiased-estimator  fisher-information  unbalanced-classes  bayesian  model-selection  aic  multiple-regression  cross-validation  regression-coefficients  nonlinear-regression  standardization  naive-bayes  trend  machine-learning  clustering  unsupervised-learning  wilcoxon-mann-whitney  z-score  econometrics  generalized-moments  method-of-moments  machine-learning  conv-neural-network  image-processing  ocr  machine-learning  neural-networks  conv-neural-network  tensorflow  r  logistic  scoring-rules  probability  self-study  pdf  cdf  classification  svm  resampling  forecasting  rms  volatility-forecasting  diebold-mariano  neural-networks  prediction-interval  uncertainty 

1
Bagaimana cara membandingkan acara yang diamati dengan yang diharapkan?
Misalkan saya punya satu sampel frekuensi dari 4 peristiwa yang mungkin: Event1 - 5 E2 - 1 E3 - 0 E4 - 12 dan saya memiliki probabilitas yang diharapkan dari peristiwa saya terjadi: p1 - 0.2 p2 - 0.1 p3 - 0.1 p4 - 0.6 Dengan jumlah frekuensi yang diamati …
9 r  statistical-significance  chi-squared  multivariate-analysis  exponential  joint-distribution  statistical-significance  self-study  standard-deviation  probability  normal-distribution  spss  interpretation  assumptions  cox-model  reporting  cox-model  statistical-significance  reliability  method-comparison  classification  boosting  ensemble  adaboost  confidence-interval  cross-validation  prediction  prediction-interval  regression  machine-learning  svm  regularization  regression  sampling  survey  probit  matlab  feature-selection  information-theory  mutual-information  time-series  forecasting  simulation  classification  boosting  ensemble  adaboost  normal-distribution  multivariate-analysis  covariance  gini  clustering  text-mining  distance-functions  information-retrieval  similarities  regression  logistic  stata  group-differences  r  anova  confidence-interval  repeated-measures  r  logistic  lme4-nlme  inference  fiducial  kalman-filter  classification  discriminant-analysis  linear-algebra  computing  statistical-significance  time-series  panel-data  missing-data  uncertainty  probability  multivariate-analysis  r  classification  spss  k-means  discriminant-analysis  poisson-distribution  average  r  random-forest  importance  probability  conditional-probability  distributions  standard-deviation  time-series  machine-learning  online  forecasting  r  pca  dataset  data-visualization  bayes  distributions  mathematical-statistics  degrees-of-freedom 

1
Apakah Faktor Penentu Kovarian dan Matriks Korelasi dan / atau Kebalikannya Memiliki Interpretasi yang Bermanfaat?
Sambil belajar menghitung kovarian dan matriks korelasi dan inversinya dalam VB dan T-SQL beberapa tahun yang lalu, saya belajar bahwa berbagai entri memiliki sifat menarik yang dapat membuatnya berguna dalam skenario penambangan data yang tepat. Salah satu contoh yang jelas adalah adanya varian pada diagonal matriks kovarians; beberapa contoh yang …

2
Interpretasi Total Hukum Kovarian
misalkan adalah variabel acak yang didefinisikan pada ruang probabilitas yang sama dan biarkan kovarians dan menjadi terbatas, maka hukum rumus dekomposisi kovarian total / kovarian menyatakan: Apa interpretasi dari dan ?X,Y,ZX,Y,ZX,Y,ZXXXYYYCov(X,Y)=E[Cov(X,Y|Z)](i)+Cov[E(X|Z),E(Y|Z)](ii)Cov(X,Y)=E[Cov(X,Y|Z)]⏟(saya)+Cov[E(X|Z),E(Y|Z)]⏟(ii)\begin{align} \text{Cov}(X,Y)=\underbrace{\mathbb{E}\big[\text{Cov}(X,Y\lvert Z)\big]}_{\text{(i)}}+\underbrace{\text{Cov}\big[\mathbb{E}(X\lvert Z),\mathbb{E}(Y\lvert Z)\big]}_{\text{(ii)}} \end{align}(i)(saya)\text{(i)}(ii)(ii)\text{(ii)} Pikiran saya: dalam (ii) dua harapan bersyarat dapat dilihat sebagai variabel acak sendiri, saya …


1
Persamaan yang benar untuk kovarians sampel tidak berat tertimbang
Saya sedang mencari persamaan yang tepat untuk menghitung kovarians sampel yang tidak bias tertimbang. Sumber-sumber internet sangat jarang pada tema ini dan mereka semua menggunakan persamaan yang berbeda. Persamaan yang paling mungkin saya temukan adalah persamaan ini: qjk=∑Ni=1wi(∑Ni=1wi)2−∑Ni=1w2i∑Ni=1wi(xij−x¯j)(xik−x¯k).qjk=∑i=1Nwi(∑i=1Nwi)2−∑i=1Nwi2∑i=1Nwi(xij−x¯j)(xik−x¯k).q_{jk}=\frac{\sum_{i=1}^{N}w_i}{\left(\sum_{i=1}^{N}w_i\right)^2-\sum_{i=1}^{N}w_i^2} \sum_{i=1}^N w_i \left( x_{ij}-\bar{x}_j \right) \left( x_{ik}-\bar{x}_k \right) . Dari: https://en.wikipedia.org/wiki/Sample_mean_and_sample_covariance#Weighted_samples Tentu …

Dengan menggunakan situs kami, Anda mengakui telah membaca dan memahami Kebijakan Cookie dan Kebijakan Privasi kami.
Licensed under cc by-sa 3.0 with attribution required.